

HUB Web Service API
IPPC ePhyto HUB

v1.8
Public - FAO/IPPC

22/03/2018

HUB Web Service API

Public - FAO/IPPC 2 22/03/2018

Table of Contents

DOCUMENT PROFILE ... 3

REVISION HISTORY ... 3

DISTRIBUTION .. 3

DOCUMENT ROADMAP .. 3

1. INTRODUCTION .. 4

1.1 Purpose .. 4

1.2 Intended Audience and Reading Suggestions ... 4

1.3 References.. 4

2. HUB ON-BOARDING .. 4

3. TECHNICAL SUPPORT ... 4

4. HUB WEB SERVICE SYSTEMS .. 5

4.1 Testing Environment (UAT) .. 5

4.1.1 URL for Testing .. 5

4.1.2 Certificates for Web Service client authentication .. 5

4.2 Production Environment ... 6

4.3 Authentication ... 7

5. HUB XML SCHEMAS ... 7

5.1 Schema ... 7

5.1.1 Envelope Header .. 7

5.1.2 Envelope Content ... 8

5.1.3 Array of EnvelopeHeader... 9

5.1.4 Array of Envelope... 9

6. OPERATIONS ... 9

6.1 Connect to the hub ... 9

6.2 DeliverEnvelope... 10

6.3 PULLImportEnvelope, AcknowledgeEnvelopeReceipt,

AdvancedAcknowledgeEnvelopeReceipt .. 14

6.4 GetUnderDeliveryEnvelope ... 16

6.5 GetImportEnvelopeHeaders & PULLSingleImportEnvelope 17

6.6 GetEnvelopeTrackingInfo .. 19

6.7 GetActiveNppos ... 21

6.8 Receiving a PUSH delivery ... 21

7. SEQUENCE DIAGRAM .. 26

8. TESTING WITH SOAP UI .. 26

HUB Web Service API

Public - FAO/IPPC 3 22/03/2018

Document Profile

Author:

UNICC

Owner:

UNICC

Client:

FAO/IPPC

Document Number:

1.4

Revision History
Date of next revision: N/A

Version: Who: What: When:

1.0 UNICC Primary Document 12/12/2016

1.1 UNICC Revision after PTC meeting in Geneva 22/03/2017

1.2 UNICC Iteration 2 Review 31/07/2017

1.3 UNICC Iteration 3 review 11/09/2017

1.4 UNICC Revision after PTC meeting in Valencia 03/10/2017

1.5 UNICC Java client sample code added 24/10/2017

1.6 UNICC Receiving through PUSH Sample
implementation added

16/11/2017

1.7 UNICC Reviewed HUB Admin console urls 04/01/2018

1.8 UNICC Updates of the March 2018 Release 22/03/2018

Distribution
This document has been distributed to:

Name Title Date of Issue Version

IPPC HUB Web Service API 28/03/2017 v1.1_Early
Release

IPPC HUB Web Service API 01/08/2017 V1.2_early
Release

IPPC HUB Web Service API 20/09/2017 1.3

IPPC Hub Web Service API 12/10/2017 1.4
HUB Users Hub Web Service API 20/10/2017 1.4

IPPC Hub Web Service API 24/10/2017 1.5
IPPC Hub Web Service API 16/11/2017 1.6
IPPC Hub Web Service API 04/01/2018 1.7

HUB Users Hub Web Service API 22/03/2018 1.8

Document Roadmap

HUB Web Service API

Public - FAO/IPPC 4 22/03/2018

Following is the planned enhancements to this document

Feature
-- no roadmap features are planned at this stage --

1. Introduction

1.1 Purpose

This document describes the IPPC HUB Web Service. It should be used as guideline to implement

the required client software components needed to connect to the HUB.

Note: This document is an early release and may be updated during the pilot phase of the HUB
project. Updates will be released following the standard Change Management process. The latest
version will be available in the document repository at https://www.ippc.int/en/ephyto/ephyto-
technical-information/

1.2 Intended Audience and Reading Suggestions

The audience for this document are developers and system architects of NPPOs who will evaluate

and release the components for connecting to the HUB. It will also be used for developing the

interface between the IPPC HUB and the IPPC Generic National System (GeNS), as well as serve

as prototype documentation of the HUB implementation. This document should be read in

parallel with the ePhyto HUB Software Requirements Specification and it is totally related to the

hub web services operations and usage.

1.3 References

- ePhyto HUB Software Requirements Specification

- https://www.ippc.int/en/ephyto/

- https://www.ippc.int/en/ephyto/ephyto-technical-information/

2. HUB On-Boarding
 The first step in this process is to send a Registration request to the NPPO using

https://www.ephytoexchange.org/onboard

 After due validation and confirmation from the IPPC official contact point of the indicated

country, the user account is automatically created (using the indicated contact email) and

credentials are sent.

 After obtaining access to the admin console the HUB Administrator will contact the focal

point sending the latest version of this document and supporting the NPPO for the initial setup

of the UAT site, where the implementation can be tested and validate before the final release

to production.

3. Technical Support

Issues encountered during the testing phase or other technical queries related to the testing of the HUB

can be raised using the Hub portal - https://www.ephytoexchange.org/support (Registered users only)

https://www.ippc.int/en/ephyto/ephyto-technical-information/
https://www.ippc.int/en/ephyto/ephyto-technical-information/
https://www.ippc.int/en/publications/84631/
https://www.ippc.int/en/publications/84631/
https://www.ippc.int/en/ephyto/
https://www.ippc.int/en/ephyto/ephyto-technical-information/
https://www.ephytoexchange.org/onboard
https://www.ephytoexchange.org/support

HUB Web Service API

Public - FAO/IPPC 5 22/03/2018

We also encourage using the collaboration tool to get quick answers and share experiences. (Registered

users only)

For general queries on the HUB please go to https://www.ephytoexchange.org/support

If you encounter issues while testing the implementation of the components needed to connect to the

HUB you can raise a technical support request from within the Administration Console

(https://hub.ephytoexchange.org/AdminConsole) following the link available in the menu after the

successful login.

The system will send a mail to the technical team that will respond to the query.

We suggest to look first at the collaboration area of the admin console as possible source of information.

4. HUB Web Service Systems

4.1 Testing Environment (UAT)

The testing environment (UAT) is a live system with the latest release of the system that is constantly

available to test the implementation of the client application connection to the HUB.

Self-Signed certificates and ad-hoc credentials can be provided in order to facilitate the activities.

4.1.1 URL for Testing

HUB UAT/Test environment can be accessed from the following URLs:

https://uat-hub.ephytoexchange.org/hub/DeliveryService?wsdl (web service WSDL)

https://uat-hub.ephytoexchange.org/hub/DeliveryService (web service end point will

accept only certificate authentication)

https://uat-hub.ephytoexchange.org/AdminConsole (Admin interface)

Log in credentials to the console are provided separately in the process of NPPO on-boarding.

4.1.2 Certificates for Web Service client authentication

During the testing phase, web services client authentication will use self-signed certificates.

NPPOs can issue their certificates with the “keytool” command found in the Java Development Kit

(JDK) or they can request that UNICC provide a sample certificate for the NPPO that they can use.

With the March 2018 release the NPPO administrator can access the HUB Admin Console and

update the public certificates that will be used to authenticate the NPPO client application when

using the services

4.1.2.1 Requesting a test certificate from UNICC

The NPPO needs to provide the information needed to create the X.500 Distinguished Name for

the certificate:

https://www.ephytoexchange.org/support
https://hub.ephytoexchange.org/AdminConsole
https://uat-hub.ephytoexchange.org/hub/DeliveryService?wsdl
https://uat-hub.ephytoexchange.org/hub/DeliveryService
https://uat-hub.ephytoexchange.org/AdminConsole

HUB Web Service API

Public - FAO/IPPC 6 22/03/2018

 Common Name

 Organization Unit

 Organization Name

 Locality Name (city)

 State Name

 Two-letter country code

UNICC will send a key store file in the PKCS12 format with the certificate, and upload the public

key from the HUB Admin Console in the NPPO profile.

4.1.2.2 Generating a self-signed test certificate

Certificates can be generated with the “keytool” command provided by the JDK. Once the NPPO

has generated the certificate, it has to send the public key to UNICC so that it can be added to the

server’s truststore.

Example of certificate generation for a NPPO entity located in London, UK with a validity of 10

years:

C:\certificates>keytool -genkey -alias nppo1 -keyalg RSA -keysize 1024 -keystore nppo.keystore -validity

3650 -keypass nppo1pass -storepass nppoStore1pass

What is your first and last name?

 [Unknown]: www.nppo.mycountry

What is the name of your organizational unit?

 [Unknown]: NPPO

What is the name of your organization?

 [Unknown]: NPPO-MyCountry

What is the name of your City or Locality?

 [Unknown]: Capital

What is the name of your State or Province?

 [Unknown]:

What is the two-letter country code for this unit?

 [Unknown]: MC

Is CN=www.nppo.mycountry, OU=NPPO, O=NPPO-MyCountry, L=Capital, ST=Unknown, C=MC correct?

 [no]: yes

Example of public key export from the key store:

C:\certificates>keytool -export -keystore nppo.keystore -alias nppo1 -file nppo1.cer -keypass nppo1pass -

storepass nppoStore1pass

Once generated, the NPPO will send the nppo1.cer file to UNICC in order to be imported into the

truststore. The certificate fingerprint is also required for validation purposes.

4.2 Production Environment

HUB Production environment can be accessed from the following URLs:

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl (web service WSDL)

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl

HUB Web Service API

Public - FAO/IPPC 7 22/03/2018

https://hub.ephytoexchange.org/hub/DeliveryService (web service end point will accept

only certificate authentication)

https://www.ephytoexchange.org/AdminConsole (Admin interface)

4.3 Authentication

Authentication to the web service supports TLS 1.1 and TLS 1.2 client certificates that are

associated to each country accessing the HUB. X509 certificates are the client credentials. Each

connected application will have a defined certificate, issued by a recognized Certificate Authority

that will authenticate the client application to the HUB on HTTPS protocol. Details of the Security

implementation are outside the scope of this document but contained in the referenced HUB

requirements document specification.

The HUB will only accept ‘envelopes’ where the ‘From’ field (described below) matches the TLS

Certificate of the connecting NPPO.

5. HUB XML Schemas

5.1 Schema

The HUB will accept an envelope that will comprise of the following two elements:

1) Envelope Header

2) Envelope Content

The WSDL defined in this document (Section 6 of this document) has 5 operations; supported by

the following entities:

a. Envelope Header

b. Envelope= header + content

c. Array of Envelope Header

d. Array of Envelope

e. HUBTrackingInfo

5.1.1 Envelope Header

The envelope header element is used to exchange information on the ePhyto certificates without

viewing/processing the content of the actual certificate.

The HUB will be instrumented to verify the correct use of such codes and raise communication

errors when such attributes are not complying with the standards. This will be a feature of the

HUB software.

During interaction with the HUB, it is not mandatory to set all the elements within the header.

However, some identified elements are required at the minimum.

 The Envelope header has the following elements:

o From: ISO 3166-1 alpha 2 letter Country Code of the exporting country

o To: ISO 3166-1 alpha 2 letter Country Code of the importing country

o CertificateType: This is the UNECE code for certificate types. For the IPPC implementation,

the HUB will check that the type code corresponds to the following two numbers only.

 851 for Phyto

https://hub.ephytoexchange.org/hub/DeliveryService
https://www.ephytoexchange.org/AdminConsole

HUB Web Service API

Public - FAO/IPPC 8 22/03/2018

 657 for Re-Export Phyto

o CertificateStatus: This is the UNECE code for the status of the certificate. For the IPPC

implementation, the HUB will check that the status code corresponds to one of the following

numbers:

 70:Issued

 39:Approved

 40:Withdrawn

 41:Rejected

o NPPOCertificateNumber: For its own reference, the exporting NPPO can insert the

certificate number of the ePhyto contained within the envelope, in this field. It will allow the

NPPO national system to match a certificate against the HubTrackingNumber in its own

national system. Furthermore, the HUB user-interface will also display this number along

with the delivery status. This element is multi-lingual; allowing the exporting NPPO to use

any language of their choice. This is limited to a 1000 characters.

o HUBTrackingNumber: This is unique identifier that will be assigned by the HUB for each

envelope when it receives the envelope for the first time. The NPPO system can subsequently

query the HUB against this identifier; to get delivery information on any particular certificate

identified by the HUBTrackingNumber. This element size can grow up to 50 characters long.

o HUBTrackingInfo: This element has one of the following four status codes; indicating the

delivery status of the envelope within the HUB:

 PendingDelivery: implies that the envelope is still held within the HUB and has not

been delivered. Also, the queue expiry period is not over; thus, the HUB still has the

envelope.

 Delivered: The envelope was successfully delivered by the HUB and has been deleted

after delivery

 FailedDelivery: The HUB has not been able to deliver the envelope and the Queue

expiry period set by the exporting NPPO was reached. Thus, the envelope was deleted

from the HUB queue.

 EnvelopeNotExists: For the given Tracking Number, the HUB does not have any

information.

 DeliveredWithWarnings: introduced with March 2018 release will be used to mark

envelopes that are acknowledge from the importing country with some schema non-

compliancy warnings text that can be read and used from the exporting country to fine

tune the generation of the most globally standardized XML

o HUBErrorMessage: This element will have messages for different errors that may occur

during interaction with the HUB. Most of the error messages are related to Queue retention

time expiration. From March 2018 release the importing country can set the warning

messages related to the AdvancedAcknowledge (see operations below) indicating elements

to be improved in the ePhyto XML they have received.

5.1.2 Envelope Content

The envelope type inherits the envelope header and extends it with the “Content” element that

can be any type of string/xml.

HUB Web Service API

Public - FAO/IPPC 9 22/03/2018

The electronic phytosanitary certificate will be created by exporting NPPO client application,

serialized into XML and sent to the HUB using the Content attribute of the envelope.

The HUB will not perform the validation of the certificate content and its adherence to the ISPM

12 schema. The importing NPPO client application will be responsible for opening the certificate

content and ensuring it adheres to the applicable standard. At the receipt of the Envelope the

importing NPPO Client Application has to acknowledge the successful receipt of the message,

regardless of the certificate validation that will be performed with a separate business process.

The following reference library contains all the documents and guidelines in how to prepare and

compile a valid ePhyto document to send via the HUB, including overall business information, the

ePhyto schema, global codes and the mapping in the ePhyto schema.

https://www.ippc.int/en/ephyto/ephyto-technical-information/

5.1.3 Array of EnvelopeHeader

This element is used to exchange a number of envelope headers grouped together. The operation

‘GetUnderDeliveryEnvelope’ uses this as described below.

5.1.4 Array of Envelope

This element contains a list of envelope. Each envelope contains – one header and one ePhyto

certificate. This entity is used in the operation ‘PULLImportEnvelope’ described in details below.

6. Operations

6.1 Connect to the hub

Connecting to the HUB is not an operation exposed by the web service, but the internal call needed

before any invoke of the remote web service operations.

In this section we show the generic code needed to open a client connection with the HUB using

C# and the .Net Framework 4.6.1 and also Java 1.8 and the Apache Axis 1 framework for

generating the client code from the WSDL definition.

The code will create the new client, add the certificate and the URL (depending on the

environment) to be used in all the subsequent calls to the web service.

C#

 private static DeliveryService getClientConnection()

 {

 // the following code is use to prevent security protocol

exceptions

 // raised by using self-signed certificates (test environment)

 ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls11;

 System.Net.ServicePointManager.ServerCertificateValidationCallback

= delegate (

 Object obj, X509Certificate certificate, X509Chain chain,

 SslPolicyErrors errors)

https://www.ippc.int/en/ephyto/ephyto-technical-information/

HUB Web Service API

Public - FAO/IPPC 10 22/03/2018

 {

 return (true);

 };

 //This is the actual implementation of the generated proxy

 //from the given or downloaded WSDL

 DeliveryService client = new DeliveryService();

 //setting the test environment URL

 client.Url = "https://uat.ippchub.unicc.org/hub/DeliveryService";

 //adding the certificate

 X509Certificate2 cert = new

X509Certificate2("/Users/luca/repos/IPPCHubDev/certificates/nppo-it.p12",

"nppoITp12");

 client.ClientCertificates.Add(cert);

 //returning the client object

 return client;

 }

Java
 private static final String KEYSTORE_TRUSTED =

"G:\\certificates\\trustedStore";

 private static final String KEYSTORE_TRUSTED_PASSWORD = "changeit";

 private static final String KEYSTORE_SERVER =

"G:\\certificates\\privateStore";

 private static final String KEYSTORE_SERVER_PASSWORD = "changeit";

 private static IDeliveryServiceProxy getClientConnection() {

 // Configure the stores with certificates

 System.setProperty("sun.security.ssl.allowUnsafeRenegotiation",

"true"); // true for self-signed certificates, false in production

 // Trusted certificates, IPPC HUB certificate should be here

 System.setProperty("javax.net.ssl.trustStore", KEYSTORE_TRUSTED);

 System.setProperty("javax.net.ssl.trustStorePassword",

KEYSTORE_TRUSTED_PASSWORD);

 // Private Key store, with NPPO certificate

 System.setProperty("javax.net.ssl.keyStore", KEYSTORE_SERVER);

 System.setProperty("javax.net.ssl.keyStorePassword",

KEYSTORE_SERVER_PASSWORD);

 // Uncomment next line to have handshake debug information

 // System.setProperty("javax.net.debug", "ssl");

 // Getting the proxy to the appropriate URL

 IDeliveryServiceProxy proxy = new IDeliveryServiceProxy("https://uat-

hub.ephytoexchange.org/hub/DeliveryService");

 return proxy;

 }

6.2 DeliverEnvelope

HUB Web Service API

Public - FAO/IPPC 11 22/03/2018

The exporting NPPO will use this operation to send the envelope to the HUB. The Header must be

filled with the following required minimum attributes:

- From,

- To,

- CertificateType,

- CertificateStatus

- NPPO Certiticate Number (is not mandatory but we suggest to use the field to be able to

easily reference each transmission with the original certificate in the exporter system)

- and the ‘Content’ attribute is populated with the actual certificate; to complete the

envelope with the XML serialized version of the generated ePhyto.

The HUB responds back with the EnvelopeHeader – which contains all the attributes populated

by the exporting NPPO client application as well as the HUBTrackingNumber and the

HUBTrackingInfo attributes are added by the HUB application.

In the case of ‘Transit’, when the certificate has to be distributed to transit countries too, the client

application should send the envelope to all involved countries as separate message and each of

the transmission will be tracked separately.

Client sample implementation in C# generated as .Net 2.0 standard web service client:

https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/transport-security-

with-certificate-authentication

C#

 // initialize the client

 DeliveryService client = getClientConnection();

 // simulating an Issue certificate from Italy to United States

 Envelope env = new Envelope()

 {

 From = "IT",

 To = "US",

 CertificateType = 851,

 CertificateStatus = 70,

 NPPOCertificateNumber = "Internal NPPO Certificate Number"

 };

 //load the actual electronic certificate XML

 var ePhyto = new System.Xml.XmlDocument();

 ePhyto.LoadXml("<?xml version=\"1.0\" encoding=\"UTF-

8\"?><ephyto><contents/></ephyto>");

 //set the XML to the content element of the message

 env.Content = ePhyto.InnerXml;

 try

 {

 // send the message to the hub and get back the header

 EnvelopeHeader header = client.DeliverEnvelope(env);

 //handle internal issues

https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/transport-security-with-certificate-authentication
https://docs.microsoft.com/en-us/dotnet/framework/wcf/feature-details/transport-security-with-certificate-authentication

HUB Web Service API

Public - FAO/IPPC 12 22/03/2018

 if (header.HUBTrackingInfo == "FailedDelivery")

 {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //Header Validation error (certificate, destination

country not boarded...)

 //Internal error of the system

 //get the error message

 string error = header.hubDeliveryErrorMessage;

 System.Console.WriteLine("Message failed delivery,

"+error);

 }

 else

 {

 //get the hub tracking number...

 string hubTrackingNumber = header.hubDeliveryNumber;

 System.Console.Write("header delivered with tracking

number : " + hubTrackingNumber);

 //persist the header details to record that the message

is under delivery

 }

 }catch(Exception ex){

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //Header Validation error (certificate, destination country

not boarded...)

 //network

 //unavailability of the remote system

 Console.WriteLine("Failed to deiver the message to the HUB"

+ ex.Message);

 }

Java
 private static EnvelopeHeader DeliverEnvelope() throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection();

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

 // Envelope creation, from Italy to United States

 Envelope envelope = new Envelope();

 envelope.setFrom("IT");

 envelope.setTo("US");

 envelope.setCertificateType(851);

 envelope.setCertificateStatus(70);

 envelope.setNPPOCertificateNumber("EPHYTO-IT-2017-0010277");

 try {

 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

 Document doc = dBuilder.parse("<?xml version=\"1.0\" encoding=\"UTF-

8\"?><ephyto><contents/></ephyto>");

HUB Web Service API

Public - FAO/IPPC 13 22/03/2018

 DOMSource domSource = new DOMSource(doc);

 StringWriter writer = new StringWriter();

 StreamResult result = new StreamResult(writer);

 TransformerFactory tf = TransformerFactory.newInstance();

 Transformer transformer = tf.newTransformer();

 transformer.transform(domSource, result);

 envelope.setContent(writer.toString());

 } catch (SAXException | IOException | ParserConfigurationException |

TransformerException e1) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //The XML string could not be parsed

 System.out.println("Failed to load certificateinto XML document.");

 throw new HubClientException(e1); // Without certificate we cannot

continue

 }

 try {

 // send the message to the hub and get back the header

 EnvelopeHeader header = proxy.deliverEnvelope(envelope);

 // Handle internal issues

 if (header.getHUBTrackingInfo().equals("FailedDelivery")) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 //Header validation error

 String error = header.getHubDeliveryErrorMessage();

 System.out.println(String.format("Message failed delivery. %s",

error));

 } else {

 //get the hub tracking number...

 String hubTrackingNumber = header.getHubDeliveryNumber();

 System.out.println(String.format("Header delivered with tracking

number: %s", hubTrackingNumber));

 }

 return header;

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System.out.println(String.format("Failed to deliver the message to

the HUB. ", e.getMessage()));

 throw new HubClientException(e);

 }

 }

If any error occurs, the HUBTrackingInfo is set to “FailedDelivery” and the details will be found

in the hubDeliveryErrorMessage element of the Envelope Header returned. Possible errors

detected include:

 The NPPO sending the envelope is not from the country in the “From” field

 There is no NPPO in the system for the country in the “To” field

 Invalid certificate type

 Invalid certificate status

Connectivity issues such as network outages or unavailability of the system will be reported

as standard HTTP protocol errors, as they are not generated by the remote application.

HUB Web Service API

Public - FAO/IPPC 14 22/03/2018

6.3 PULLImportEnvelope, AcknowledgeEnvelopeReceipt,

AdvancedAcknowledgeEnvelopeReceipt

The importing NPPO configured for PULL operation will use this operation to retrieve all the

envelopes that are destined for them. The authenticated client is representing the importing

country and it will receive all of the envelopes (array of envelope) that are in the HUB’s queue

with the importing country in the To field. For each of these envelopes, the importing country

should message back on the operation AckknowledgeEnvelopeReceipt the successful receipt of

each envelope; with the HUBTrackingNumber. Acknowledged messages will be removed from the

queue and the next pull operation will fetch the remaining messages until the result is empty.

The NPPO configuration will allow for reducing the batch of the messages of each pull in order to

fine tune the communication with office using a poor connection.

From March 2018 release the system support to communicate a text message related to the

acknowledge operation that will set the tracking info to DeliveredWithWarnings and provide in

the error message the details of the issues found during the receiving and opening of the XML.

See sample below, such messages can be extracted from a schema validation action and reported

back to the exported to leverage the XML harmonization.

Client sample implementation:

C#

 // initialize the client

 DeliveryService client = getClientConnection();

 //get all the envelopes pending delivery

 Envelope[] envelopesToImport = client.PULLImportEnvelope();

 foreach(Envelope env in envelopesToImport)

 {

 System.Console.WriteLine("Processing hub delivery number : "

+env.hubDeliveryNumber);

 try

 {

 //get the content containing the certificate XML

 String xmlContent = env.Content;

 //verifications in xml

 var ePhyto = new System.Xml.XmlDocument();

 ePhyto.LoadXml(xmlContent);

 //save the ePhyto to the client application

 //acknowledge the receipt back to the server (this could be

done as separate action based on user validation ??)

 client.AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber);

 //perform schema/xml checks

HUB Web Service API

Public - FAO/IPPC 15 22/03/2018

 client.AdvancedAcknowledgeEnvelopeReceipt(env.hubDeliveryNumber,

“please indicate the date elements without milliseconds”);

 }

 catch(Exception ex)

 {

 //handle the content parsing error

 System.Console.WriteLine(String.Format("error when parsing

content of {0} {1}", env.hubDeliveryNumber,ex.Message));

 }

 }

Java
 private static void pullAcknowledge() throws HubClientException {

 IDeliveryServiceProxy proxy = getClientConnection();

 try {

 // get all the envelopes pending delivery

 Envelope[] envelopesToImport = proxy.PULLImportEnvelope();

 for (Envelope envelope : envelopesToImport) {

 System.out.println(String.format("Processing hub delivery number:

%s", envelope.getHubDeliveryNumber()));

 // get the content containing the certificate XML

 String xmlContent = envelope.getContent();

 // verifications in XML

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder;

 try {

 dBuilder = dbFactory.newDocumentBuilder();

 InputStream content = new

ByteArrayInputStream(envelope.getContent().getBytes(StandardCharsets.UTF_8.

name()));

 Document doc = dBuilder.parse(content);

 } catch (ParserConfigurationException | SAXException | IOException

e) {

 // The content of the envelope is not a proper XML file

 System.out.println(String.format("Error parsing content of %1$s

%2$s", envelope.getHubDeliveryNumber(), e.getMessage()));

 // This envelope won't be acknowledged

proxy.advancedAcknowledgeEnvelopeReceipt(envelope.getHubDeliveryNumber(),

“error while parsing the XML”);

 continue;

 }

 //acknowledge the receipt back to the server (this could be done as

a separate action based on user validation)

 proxy.acknowledgeEnvelopeReceipt(envelope.getHubDeliveryNumber());

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

HUB Web Service API

Public - FAO/IPPC 16 22/03/2018

 // unavailability of the remote system

 System.out.println(String.format("Failed to deliver the message to

the HUB. ", e.getMessage()));

 throw new HubClientException(e);

 }

 }

If an error occurs in the processing of PullImportEnvelope, AckowledgeEnvelopeReceipt or

AdvancedAckowledgeEnvelopeReceipt, a standard SOAP Fault element will be sent describing

the error. Errors detected in these services include:

 The NPPO making the request is not in the system

 The acknowledge of receipt requester NPPO isn’t from the country in the “To” field of the

acknowledged header

 Envelope not found, as above related to acknowledge request. When the sent number is

not found in the HUB.

6.4 GetUnderDeliveryEnvelope

The operation allows the exporting NPPO to get a list of all the envelope headers that are in the

delivery process (i.e. with HUBDeliveryStatus as PendingDelivery). The authenticated client

represents the exporting country. The HUB will return the list of all the envelopes that are

pending delivery (array of EnvelopeHeader).

The client application can use the HUBTrackingNumber from the returned envelope headers and

updates the system.

Client sample implementation.

C#

DeliveryService client = getClientConnection();

 try

 {

 //get the envelopes under delivery (received by the HUB and

queued to be delivered to the destination)

 EnvelopeHeader[] headers = client.GetUnderDeliveryEnvelope();

 //cicles the records to update the client system

 foreach (var head in headers)

 {

 //updates the client records

System.Console.WriteLine("Env:"+head.hubDeliveryNumber+",Tracking

Info:"+head.HUBTrackingInfo);

 }

 }

 catch (Exception ex)

 {

 System.Console.WriteLine(ex.Message);

 }

Java

HUB Web Service API

Public - FAO/IPPC 17 22/03/2018

 private static void getUnderDeliveryEnvelope() throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection();

 try {

 // get the envelopes under delivery

 EnvelopeHeader[] headers = proxy.getUnderDeliveryEnvelope();

 //clicles the records to update the client system

 for(EnvelopeHeader header : headers) {

 // updates client records

 System.out.println(String.format("Envelope: %1$s - Tracking info:

%2$s", header.getHubDeliveryNumber(), header.getHUBTrackingInfo()));

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System.out.println(String.format("Failed to deliver the message to

the HUB. ", e.getMessage()));

 throw new HubClientException(e);

 }

 }

 If an error occurs in the processing of GetUnderDeliveryEnvelope a standard SOAP Fault

element will be sent describing the error. Errors detected in this service include:

 The NPPO making the request is not in the system

6.5 GetImportEnvelopeHeaders & PULLSingleImportEnvelope

Similarly to the previous this operation allows the importing NPPO to get a list of all the envelope

headers that are in the delivery process. The authenticated client represents the importing

country. The HUB will return the list of all the envelopes that are pending delivery (array of

EnvelopeHeader).

The client application can use the HUBTrackingNumber from the returned envelope headers and

pull each of them one by one. This will allow the importing country to work on the entire subset

of messages to be delivered, rather than having to pull them in batches

Client sample implementation.

C#

DeliveryService client = getClientConnection();

 try

 {

 //get the envelopes under delivery (received by the HUB and

queued to be delivered to the destination)

 EnvelopeHeader[] headers = client.GetImportEnvelopeHeaders();

 //cicles the records to update the client system

 foreach (var head in headers)

 {

HUB Web Service API

Public - FAO/IPPC 18 22/03/2018

 Envelope env =

client.PULLSingleImportEnvelope(head.hubDeliveryNumber);

 //get the content containing the certificate XML

 String xmlContent = env.Content;

 //verifications in xml

 var ePhyto = new System.Xml.XmlDocument();

 ePhyto.LoadXml(xmlContent);

 //save the ePhyto to the client application

 //acknowledge the receipt back to the server (this could be

done as separate action based on user validation ??)

 client.AcknowledgeEnvelopeReceipt(env.hubDeliveryNumber);

 //perform schema/xml checks

client.AdvancedAcknowledgeEnvelopeReceipt(env.hubDeliveryNumber, “please

indicate the date elements without milliseconds”);

 }

 }

 catch (Exception ex)

 {

 System.Console.WriteLine(ex.Message);

 }

Java
 private static void getImportEnvelopeHeaders() throws HubClientException

{

 IDeliveryServiceProxy proxy = getClientConnection();

 try {

 // get the envelopes under delivery

 EnvelopeHeader[] headers = proxy.getUnderDeliveryEnvelope();

 //clicles the records to update the client system

 for(EnvelopeHeader header : headers) {

 // get the envelope

 Envelope env = proxy.PULLSingleImportEnvelope(header.

getHubDeliveryNumber());

 // get the content containing the certificate XML

 String xmlContent = env.getContent();

 // verifications in XML

 DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder;

 try {

 dBuilder = dbFactory.newDocumentBuilder();

HUB Web Service API

Public - FAO/IPPC 19 22/03/2018

 InputStream content = new

ByteArrayInputStream(env.getContent().getBytes(StandardCharsets.UTF_8.name(

)));

 Document doc = dBuilder.parse(content);

 } catch (ParserConfigurationException | SAXException | IOException

e) {

 // The content of the envelope is not a proper XML file

 System.out.println(String.format("Error parsing content of %1$s

%2$s", env.getHubDeliveryNumber(), e.getMessage()));

 // This envelope won't be acknowledged

proxy.advancedAcknowledgeEnvelopeReceipt(env.getHubDeliveryNumber(), “error

while parsing the XML”);

 continue;

 }

 //acknowledge the receipt back to the server (this could be done as

a separate action based on user validation)

 proxy.acknowledgeEnvelopeReceipt(env.getHubDeliveryNumber());

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System.out.println(String.format("Failed to pull envelopes from the

HUB. ", e.getMessage()));

 throw new HubClientException(e);

 }

 }

 If an error occurs in the processing of GetImportEnvelopeHeader,

AcknowledgeEnvelopeReceipt and AdvanvcedAcknowledgeEnvelopeReceipt a standard SOAP

Fault element will be sent describing the error. Errors detected in this service include:

 The NPPO making the request is not in the system

6.6 GetEnvelopeTrackingInfo

This operation provides the HUBTrackingInfo for a given HUBTrackingNumber;none envelope at

a time. The idea is that if the client application has sent the envelope and the envelope header is

not listed in the pending delivery, then the system should query the hub to understand if it was

delivered successfully and/or at which stage it is. Reference of the tracking info is done above and

commented in the code example below.

C#

DeliveryService client = getClientConnection();

 try

 {

 EnvelopeHeader head= client.GetEnvelopeTrackingInfo(num);

 System.Console.WriteLine(string.Format("The envelope {0}

HUB Web Service API

Public - FAO/IPPC 20 22/03/2018

tracking info is {1}",head.hubDeliveryNumber,head.HUBTrackingInfo));

 switch(head.HUBTrackingInfo){

 case "Delivered":

 //perform client updates to mark the envelope

delivered

 break;

 case "DeliveredWithWarnings":

 //perform client updates to mark the envelope

delivered, capture the text and send the information to technical people

 break;

 case "FailedDelivery":

 string error = head.hubDeliveryErrorMessage;

 //update the client state with the informational

error message

 break;

 case "EnvelopeNotExists":

 //the message was received by the hub but not yet

added to the queue or the number is not correct

 //resending of the original can be applied

 break;

 case "PendingDelivery":

 //still in the queue on the hub, waiting to be

pulled or pushed

 break;

 }

 }

 catch (Exception ex)

 {

 System.Console.WriteLine(ex.Message);

 }

Java

 private static void getEnvelopeTrackingInfo(String hubTrackingNumber)

throws HubClientException {

 IDeliveryServiceProxy proxy = getClientConnection();

 try {

 EnvelopeHeader header =

proxy.getEnvelopeTrackingInfo(hubTrackingNumber);

 System.out.println(String.format("The envelope %1$s tracking info is

%2$s", header.getHubDeliveryNumber(), header.getHUBTrackingInfo()));

 switch (header.getHUBTrackingInfo()) {

 case "Delivered":

 // perform client updates to mark the envelope as delivered

 break;

 case "DeliveredWithWarnings":

 // perform client updates to mark the envelope as delivered,

capture the error message and send it to the technical people

 break;

 case "FailedDelivery":

 String errorMessage = header.getHubDeliveryErrorMessage();

 // update the client state with the informational error message

 break;

HUB Web Service API

Public - FAO/IPPC 21 22/03/2018

 case "EnvelopeNotExists":

 //the message was received by the hub but not yet added to the

queue or the number is not correct

 //resending of the original can be applied

 break;

 case "PendingDelivery":

 //still in the queue on the hub, waiting to be pulled or pushed

 break;

 }

 } catch (RemoteException e) {

 //manage the exception and provide errors to the client

 //in this case the error is due to one of the following

 // network

 // unavailability of the remote system

 System.out.println(String.format("Failed to deliver the message to

the HUB. ", e.getMessage()));

 throw new HubClientException(e);

 }

 }

If an error occurs, the error will be returned as SOAP exception. Possible errors detected include:

 The NPPO making the request is not in the system

 Requester NPPO isn’t from the country in the “From” field

6.7 GetActiveNppos

This operation is a simple query action that return all the active NPPO of the HUB, with only the

Country code, the Send and Receive flags. Such flags may be used by a client application to

automate the sending or receiving from the relevant country depending on their status on the

HUB.

6.8 Receiving a PUSH delivery

In order to receive a PUSH delivery the importer NPPO must have an endpoint ready for the HUB to

connect.

The NPPO can use the HUB WSDL file in order to generate the needed sources.

Here below a sample on how to create a basic endpoint using Eclipse and Apache Axis.

First, create a new Dynamic Web project in Eclipse (here we use JBoss as target runtime, please use the

runtime that best suit your needs)

HUB Web Service API

Public - FAO/IPPC 22 22/03/2018

You can click “Finish” in this dialog.

Once the project is there (skip the project creation if you want to implement the service into an existing

project), you will need to create the classes implementing the web service interface. For this, we will

add a new Web Service to the project by right clicking the project name and then “new” and “Other…”

HUB Web Service API

Public - FAO/IPPC 23 22/03/2018

Select “Web Service” and click “Next”

HUB Web Service API

Public - FAO/IPPC 24 22/03/2018

As we already have the WSDL file, select “Top down Java bean Web Service”

After that enter the Hub WSDL URL address in the service definition:

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl

We will use “Apache Axis” and JBoss as our server for the deployment. If you have a different

Application Server, just select it by clicking in the “Server runtime” link. Make sure that the Application

Server is running and click “Finish”.

When the process finishes, Eclipse will open the file: DeliveryServiceSoapBindingImpl.java this is

where the code has to be completed. In this case, we only need to implement the “deliverEnvelope”

method, which is the one that will be called by the PUSH service in the HUB.

Java

https://hub.ephytoexchange.org/hub/DeliveryService?wsdl

HUB Web Service API

Public - FAO/IPPC 25 22/03/2018

 public _int.ippc.ephyto.HUB_Entities.EnvelopeHeader

deliverEnvelope(_int.ippc.ephyto.HUB_Entities.Envelope env) throws

java.rmi.RemoteException, _int.ippc.ephyto.HubWebException {

 saveEnvelope(env);

 return env;

 }

 private void saveEnvelope(_int.ippc.ephyto.HUB_Entities.Envelope env) {

 // do checks and store the envelope in the suitable place

 // acknowledge the reception

 HubClient.acknowledge(env);

 }

Save the envelope and then acknowledge the reception of the envelope to the HUB so it can be marked

as delivered.

Note that the HubClient is referring to the object implementing the connection to the HUB web services.

In the example above we do not provide guidelines on how to setup the client certificate authentication

as it may vary considerably depending on the underlying platform and infrastructure. To implement the

push endpoint the NPPO application should accept the HUB public certificate for the client

authentication.

HUB Web Service API

Public - FAO/IPPC 26 22/03/2018

7. Sequence Diagram
Following a sequence diagram defining the optimal envelope delivery process interaction

between the NPPO client applications and the HUB.

Exporter
Application HUB

Importer
Application

Create
Envelope

DeliverEnvelope

Verify Envelope

EnvelopeHeader

queue process

wait threshold
PullImportEnvelopes

Envelope

AcknowledgeEnvelopeReceipt

Store Envelope

Remove Envelope Content

GetEnvelopeTrackingInfo

EnvelopeHeader

8. Testing with Soap UI

Note: Each time that SOAP UI is started, steps 9 to 15 have to be done again.

Please follow the next steps in order to test with SOAPUI:

1. Download and installs SOAP UI. We are using version 5.3
2. Go to the Installation folder bin directory and open the file SOAPUI-5.3.0.vmoptions. On

windows machines, the file is located in “C:\Program Files\SmartBear\SoapUI-
5.3.0\bin”, on Mac is under the /Applications/SoapUI-
5.3.0.app/Contents/vmoptions.txt. You have to edit this file with Administrator rights.

3. Include this line at the end of the file (the hub web service accepts only TLSv1.1 and
TLSv1.2):

HUB Web Service API

Public - FAO/IPPC 27 22/03/2018

-Dsoapui.https.protocols=TLSv1.1,TLSv1.2

4. Save the file and open or reopen SOAP UI.
5. Go to File New SOAP Project.
6. In “Project Name” field, choose a descriptive project name.
7. In “Initial WSDL” field, choose the provided URL for the endpoint (this URL should finish

in “?wsdl”), or choose the wsdl file, if you received the file or you saved the wsdl file in
your computer.

8. After clicking OK, SOAP UI will generate some templates with the operation requests.
Here you can see an example of this generated template requests:

9. Right click in the project name, in our case “HUBService”. And choose the option “Show
Project View”.

10. In the new dialog go to “WS-Security Configurations” tab and inside this tab, go to the
“Keystores” tab.

11. Click on the green plus symbol button in order to add your client certificate. This green
plus symbol button is at the top left hand side corner of the window.

12. In the bowser window, choose your certificate keystore with P12 extension and format.
13. Write the keystore password in the prompt windows.
14. A new keystore rows appears in the window with Status OK.

HUB Web Service API

Public - FAO/IPPC 28 22/03/2018

15. Add you certificate alias and password, in our case the certificate alias is “nppo-it”

16. Close this windows and click in DeliveryEnvelope request (the following procedure is
valid for every request). A Request template appears:

17. Include your certificate in the request, in the filed SSL Keystore (do the same for the rest
of the requests that you want to test):

HUB Web Service API

Public - FAO/IPPC 29 22/03/2018

18. Fill the template with valid data like in the example, and click in RUN (remember
“hub:From” in the code of your country and should be the same as your certificate
country code):

19. You receive the response:

20. If you save the project and close SOAP UI, you need to repeat steps 9 to 15 when you
open SOAP UI again.

