2019 FIRST CONSULTATION

1 July – 30 September 2019

Compiled comments for Draft annex to ISPM 27: Diagnostic protocol for Striga spp. (2008-009)

Summary of comments

Name	Summary				
Cuba	No tenemos comentarios al Protocolo.				
European Union	Comments submitted by the European Commission on behalf of the European Union and its 28 Member States.				
South Africa	The National Plant Protection Organisation of South Africa (NPPOZA) has no comments and therefore accepts this standard.				

T (Type) - B = Bullet, C = Comment, P = Proposed Change, R = Rating

FAO sequential number	Para	Text	т	Comment
1	G	(General Comment)	С	Guyana Guyana endorses this document and therefore has no objections with it moving forward. Category : SUBSTANTIVE
2	G	(General Comment)	С	Mexico I support the document as it is and I have no comments Category : SUBSTANTIVE
3	G	(General Comment)	С	EcuadorStriga es un género de plantas perteneciente a la familiaScrophulariaceae. Ahora clasificada dentro de la familiaOrobanchaceae. Son plantas parasíticas de raíz, lassemillas de la maleza germinan en respuesta a los exudados deraíz del huésped, se parasita mediante lasextructuras especializada llamada haustorio; por el cual pasan losnutrientes y el agua de la planta huésped.Striga ataca algunas familias de las poaceas como: maíz,pasto, arroz, sorgo entre otros; provocando pérdidasimportantes en los cultivos.En cuanto a Ecuador Striga no se ha reportado ningún casode esta maleza por lo que es una Plaga Cuarentenaria Ausente. <i>Category : TECHNICAL</i>
4	G	(General Comment)	С	Peru Perú ratifica los comentarios y sugerencias concordados a nivel del COSAVE. Category : SUBSTANTIVE

5	G	(General Comment)	C Russian Federation The Russian Federation would like to formally endor comments submitted via the IPPC Online Comment Category : SUBSTANTIVE	se the EPPO System.
6	G	(General Comment)	C European Union The current diagnostic protocol covers diagnostic ide seeds of three Striga species - Striga asiatica, S. ge hermontica. It is recommended to add to the diagno- information on other Striga species that can pose a threat in case of importation of commodities from co- these dangerous weeds are present. Further, it is recommended to add to the diagnostic information on the morphology of Striga fruits, cons- they can also be present in commodities and be use diagnostic identification. The document should beclarified and English improv <i>Category : SUBSTANTIVE</i>	entification of snerioides, S. ostic protocol potential ountries where c protocol oidering that ed for
7	G	(General Comment)	C Argentina Simplify the description of the sampling procedure of section 3.1 by including the sample size required for detection, so that it is clearly specified just like the halepense. Category : SUBSTANTIVE	lescribed in r Striga spp. DP19 Sorghum
8	G	(General Comment)	C Slovenia Slovenia would like to formally endorse the EPPO co submitted via the IPPC Online Comment System. Category : TECHNICAL	mments
9	G	(General Comment)	C Bahrain no comment Category : TECHNICAL	
10	G	(General Comment)	C Cuba No tenemos comentarios al Protocolo. Category : TECHNICAL	
11	G	(General Comment)	C EPPO The document should be clarified and English impro Category : SUBSTANTIVE	ved.
12	G	(General Comment)	C EPPO All species of Striga genus are included in the EAEU Quarantine Pests and pose a significant threat to ag grown in the Russian Federation – maize, wheat, ry sorghum, millet. The current diagnostic protocol covers diagnostic id seeds of three Striga species - Striga asiatica, S. ge hermontica. It is recommended to add to the diagno information on other Striga species that can pose a threat in case of importation of commodities from co these dangerous weeds are present	Unified List of ricultural crops e, oat, rice, lentification of snerioides, S. ostic protocol potential ountries where

				Further, it is recommended to add to the diagnostic protocol information on the morphology of Striga fruits, considering that they can also be present in commodities and be used for diagnostic identification. <i>Category : SUBSTANTIVE</i>
13	G	(General Comment)	С	Australia Para 99 and the 4th column of table 1 (surface texture) could probably be better explained to help diagnose Striga spp. For example, para 99 says "the seed surface of Orabanche and Phelipanche is deeply honeycombed and lacks the spiral ornamental ridges of Striga". However the term 'honeycomb' is again used to describe the surface texture of Striga spp. with no further explanation on the level of honeycomb structures (para 117, 123). In para 117 the use of word 'smooth' is also not clear when ridges appear in the picture. <i>Category : TECHNICAL</i>
14	G	(General Comment)	С	Australia In the Acknowledgements section Barbara Waterhouse 'affiliation' should probably be attributed as "Department of Agriculture, Cairns, Australia" (instead of the NAQS attribution) and Gregory Chandler's should also be changed to "Department of Agriculture, Sydney, Australia" (rather than Department of Agriculture and Water Resources). Category : EDITORIAL
15	G	(General Comment)	С	United States of America The exact scope of the document is not clear: is it to discriminate the entire Striga genus from other plant genera or is it to discriminate the three species of Striga (S. asiatica, S. gesnerioides, and S. hermonthica) from other Striga species. If the purpose is to discriminate the Striga genus from other plant genera, we suggest to focus more on the genus level characteristics (that could be used to separate this genus from others). If the purpose is to be able to separate these three species from all other Striga species that they may commonly be confused with, then more information has to be added to be able to do so. <i>Category : SUBSTANTIVE</i>
16	G	(General Comment)	C	Uruguay The description of the sampling procedure described in section 3.1 should be simplified by including the sample size required for detection of Striga spp., so that it is clearly specified just like the DP19 of Sorghum halepense. <i>Category : TECHNICAL</i>
17	G	(General Comment)	С	Barbados This draft annex is comprehensive Barbados has no changes to make. Category : EDITORIAL

18	G	(General Comment)	C	C	Guinea-Bissau I agree Category : TECHNICAL
19	G	(General Comment)	C	С	Gambia When the whole lot is less than 25.000 seeds, the whole lot should be examined without sub-sampling procedures, provided that the sample weight is not significantly less than the minimum sample weight Category : SUBSTANTIVE
20	G	(General Comment)	C	C	Thailand Morphological idenification of seed or plant are suitable for the identification of 3 species , including Striga asiatica, S. gesnerioides and S. hermonthica. However, this information is not enough for the identification of other species in genus Striga., which are quite similar to the aforesaid species, particularly, Striga hermonthica and Striga aspera. Although differences on the characteristic of corola bend between Striga hermonthica and Striga aspera is described in section 4.3.3, lots of expertise is required for the identification. So, molecular identification should be provided as an alternative methods in order to complete this protocol and to prevent the misidentification. <i>Category : SUBSTANTIVE</i>
21	G	(General Comment)	C	C	China According to this standard, the seeds and plants of three damaging Striga species can be identified, but the details should be added to make it more complete. <i>Category : TECHNICAL</i>
22	G	(General Comment)	C	C	Malawi Malawi supports the Draft Annex to ISPM 27: Striga spp. (2008- 009) Category : SUBSTANTIVE
23	G	(General Comment)	C	C	Malawi Malawi supports the Draft Annex to ISPM 27: Striga spp. (2008- 009) Category : SUBSTANTIVE
24	G	(General Comment)	C	C	Botswana we are adopting the diagnostic protocol Category : TECHNICAL
25	G	(General Comment)	C	C	New Zealand New Zealand supports the protocol. <i>Category : SUBSTANTIVE</i>
26	G	(General Comment)	C	C	COSAVE Simplificar la descripción del procedimiento de muestreo descripta en la sección 3.1 incluyendo el tamaño de muestra requerido para la detección de Striga spp., de modo que se especifique claramente al igual que el DP19 de Sorghum halepense.

1. Pest Info	prmatio	n		Simplify the description of the sampling procedure described in section 3.1 by including the sample size required for Striga spp. detection, so that it is clearly specified just like the DP19 Sorghum halepense. Category : SUBSTANTIVE
27	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%losses, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	P	Japan Delete " in severe cases of up to 85%". There are various ways of taking data on yield losses (e.g. sample size of fields are different case by case), so the figures vary depending on the situation. The specific figure may induce misleading, which should be avoided. Actually, various figures are described even when looking at the cited reference, i.e. Rodenburg et al.(2005). (For reference) Yield losses due to Striga infection of cereals in West Africa average 24% (10–31%), but in areas of heavy infestation losses reach 90–100% in some years.(Mohamed et al., 2001) <i>Category : SUBSTANTIVE</i>
28	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	P	 European Union Yied suppression or reduction is not a symptom. This part should be deleted as effetcs on yield are already mentioned in the previous sentence. The genus Striga Lour. (witchweeds) comprises approximately 60 species of obligate root parasitic plants (from the different literature sources). Ba AT (1984) Morphology, anatomy and ultrastructure of some parasitic species of the genus Striga (Scrophulariaceae) in: Striga biology and control (1984) https://idl-bnc- idrc.dspacedirect.org/bitstream/handle/10625/7701/63549.pdf?se quence=1 It sould be worth stating the Striga are annual plants. The reference provided for 42 species is Mohamed et al 2001. This reference is about Striga species in Africa and refers to 28 species and 6 subspecies is there a reference missing?. Ba AT (1984) in Striga biology and control (1984, E.S. AYENSU H. DOGGETT R.D. KEYNES J. MARTON-LEFEVRE L.J. MUSSELMAN C. PARKER A. PICKERING) states that According to several authors, this genus includes some 25 to 60 species, all species that have been examined are root parasites. As there is obviously some confusion in the number of species

-

				within the Genus (due probally to taxomonic uncertainty and multiple sub-species) a more general statement on the number of species could be appropriate. For example Plants of the World list 52 species: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:na mes:38035-1#source-KB. Whereas Spallek et al., (2013) detail 'approximaltly 30 species'. The general pest information should speciy that species within the Genus show different host preferences (ref: Runo & amp; Kuria, 2018) Runo S, Kuria EK (2018) Habits of a highly successful cereal killer, Striga. PLoS Pathogens 14(1): e1006731. https://doi.org/10.1371/journal.ppat.1006731 <i>Category : TECHNICAL</i>
29	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	С	EPPO Yied suppression or reduction is not a symptom. This part should be deleted as effects on yield are already mentioned in the previous sentence. <i>Category : TECHNICAL</i>
30	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	C	EPPO It sould be worth stating the Striga are annual plants. The reference provided for 42 species is Mohamed et al 2001. This reference is about Striga species in Africa and refers to 28 species and 6 subspecies is there a reference missing? Ba AT (1984) in Striga biology and control (1984, E.S. AYENSU H. DOGGETT R.D. KEYNES J. MARTON-LEFEVRE L.J. MUSSELMAN C. PARKER A. PICKERING) states that According to several authors, this genus includes some 25 to 60 species, all species that have been examined are root parasites. As there is obviously some confusion in the number of species within the Genus (due probally to taxomonic uncertainty and multiple sub-species) a more general statement on the number of species could be appropriate. For example Plants of the World list 52 species: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:na mes:38035-1#source-KB. Whereas Spallek et al., (2013) detail 'approximaltly 30 species'. The general pest information should speciy that species within the Genus show different host preferences (ref: Runo & Kuria, 2018) Runo S, Kuria EK (2018) Habits of a highly successful cereal killer, Striga. PLoS Pathogens 14(1): e1006731. https://doi.org/10.1371/journal.pnat.1006731

				Category : TECHNICAL
31	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	С	EPPO The genus Striga Lour. (witchweeds) comprises approximately 60 species of obligate root parasitic plants (from the different literature sources). Ba AT (1984) Morphology, anatomy and ultrastructure of some parasitic species of the genus Striga (Scrophulariaceae) in: Striga biology and control (1984) https://idl-bnc- idrc.dspacedirect.org/bitstream/handle/10625/7701/63549.pdf?se quence=1 <i>Category : TECHNICAL</i>
32	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	Ρ	China This common name was mentioned in "2. Taxonomic Information" already. <i>Category : EDITORIAL</i>
33	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	С	China The numbers of striga spp. needs further confirmation Recommended reference:http://www.theplantlist.org/ <i>Category : TECHNICAL</i>
34	50	The genus <i>Striga</i> Lour. (witchweeds) comprises approximately 42 species of obligate root parasitic plants (Mohamed <i>et al.</i> , 2001). <i>Striga</i> is mainly distributed in tropical and subtropical regions, and some species are major pests of agricultural crops in these regions. Crops parasitized by <i>Striga</i> exhibit reduced growth, with substantial yield losses in severe cases of up to 85%, depending on the level of resistance and tolerance of the specific host genotype (Rodenburg <i>et al.</i> , 2005). Symptoms of parasitism include yield suppression or reduction, stunted growth, and a drought-like appearance of the leaves.	C	Egypt More recent publication claim that: The genus Striga comprises about 30 obligate root-parasitic plants (Spallek et al., 2013;) <i>Category : TECHNICAL</i>
35	51	The greatest damage to crops is caused by three species: <i>Striga Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In	Ρ	Japan Mohamed et al.(2001) indicated economical damages caused by Striga asiatica and S. hermonthica were bigger among Striga species and this information is already covered in the 2nd

		Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).		sentence. The greatest damage by S. gesnerioides is not justified in this reference. As there is no common criteria to clarify the size of "impact" and "damage", "the greatest damage to crops" may induce misleading. <i>Category : SUBSTANTIVE</i>
36	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).For the above reasons, the information for diagnosis of these only three species, Striga asiatica, <i>S. gesnerioides</i> and <i>S. hermonthica</i> are provided. Other species with importance in a limited geographical range include: <i>Striga angustifolia</i> (Don) Saldanha (1963) <i>Striga aspera</i> (Willd.) Benth. (1836) <i>Striga densiflora</i> (Benth.) Benth. (1863)	p	Japan As described in this DP the 3 species covered by this DP, i.e. Striga asiatica, S. gesnerioides and S. hermonthica, among over 40 Stringa species, are economically important and are distributed in many parts of the world. However there are some other Stringa species which some countries and regions regulate as quarantine pests (EPPO Global Database, IPP), even though their distributed areas are limited comparing to these 3 species (CABI/CPC). We would like to propose that other Stinga species which member countries regulate as quarantine pests should be added as examples. The additional sentences are proposed in line with an expression from DP 18 "Anguina spp.". <i>Category : SUBSTANTIVE</i>
37	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>EragostisEragrostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	European Union Correct the mistake when writing Eragostis tef on Eragrostis tef in Latin Category : EDITORIAL
38	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In	С	European Union We suggest add the following: The greatest damage to the affected plant is caused by S.

	Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).		hermonthica During the first month of vegetation, when feeding on the nutrient the species forms underground shoots which can be very numerous - up to 500 per plant. Loss of crop ranges from 40 to100%. Unlike other types of Striga, this species is an obligate outcrosser. <i>Category : SUBSTANTIVE</i>
39 51	The greatest damage to crops is caused by three species: <i>Striga</i> <i>asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine</i> <i>coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum</i> <i>bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza</i> <i>sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna</i> <i>unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana</i> <i>tabacum</i> (tobacco, Solanaceae).	C	 European Union Does these families (Convolvulaceae, Euphorbiaceae) include crop species injuried by Striga spp. or does they refer to wild plants? Maybe useful to specify because for all other taxa cited, a name of common crop is given. In the first sentence the reference given is Mohamed et al 2001. This reference does not seem correct (the essenital content of the articile is about species description) and should be checked by the authors. It seems that a reference to Mohamed et al 2006 is more appropriate. Mohamed KI, Papes M, Williams R, BenzBW & amp; Peterson T (2006) Global Invasive Potential of 10 Parasitic Witchweeds and Related Orobanchaceae. Ambio 35 6 Furthermore, Spallek et al (2013) https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12058 citing Parker 2009 (which we have not been able to access so far) refers to five species of economic importance. Only five Striga species are currently of economic importance, with S. hermonthica causing by far the most serious damage to sub-Saharan cereal production, followed by S. asiatica, S. gesnerioides and, to a far lesser extent, S. aspera and S. forbesi Benth. A reference is needed to support the statement made in S. gesnerioides (last sentence) Csurhes et al., 2016 is a risk assessment from Australia. Firstly, it better to use the primary references (which there are many) and secondly the summary in the RA states that three species can cause 7 billion in damage – in this paragraph, the wayit can be read is that two species (S. asiatica and S. hermonthica) reduce crop yields by USD 7 billion. The use of some in 'with some impacts on Saccharum spp. (sugarcane) and Oryza sativa (dryland rice)' is not clear is it to a lesser extent than the aforementioned? Is this really the case for rice?, Editorial

				To avoid any misunderstanding we would suggest to write "Fabaceae, especially Vigna inguiculata (cowpea)," as follows "Fabaceae (especially Vigna unguiculata (cowpea)),". <i>Category : TECHNICAL</i>
40	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only-important <i>Striga</i> species that attacks a-dicotyledon host plants as main hosts and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	Japan There are reports that other species (e.g. Striga densiflora) than S. gesnerioides attacks dicotyledon plants even though they are not main hosts. (For reference) According to CPC/CABI(2019), "Wild hosts are mostly members of the Poaceae but also include some Cyperaceae and dicots. Kumar and Solomon (1941) record 24 hosts species. Their 18 newly observed hosts included Andropogon, Digitaria, Dactyloctenium, Euchlaena, Lophopogon, Paspalum, Setaria, Tragus and Tripogon species as well as species of Commelina, Cyperus, Desmodium, Glossocardia, Indigofera and Iseilema." <i>Category : SUBSTANTIVE</i>
41	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	С	EPPO We suggest add the following: The greatest damage to the affected plant is caused by S. hermonthica During the first month of vegetation, when feeding on the nutrient the species forms underground shoots which can be very numerous - up to 500 per plant. Loss of crop ranges from 40 to100%. Unlike other types of Striga, this species is an obligate outcrosser. <i>Category : TECHNICAL</i>
42	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	С	EPPO In the first sentence the reference given is Mohamed et al 2001. This reference does not seem correct (the essenital content of the articile is about species description) and should be checked by the authors. It seems that a reference to Mohamed et al 2006 is more appropriate. Mohamed KI, Papes M, Williams R, BenzBW & amp; Peterson T (2006) Global Invasive Potential of 10 Parasitic Witchweeds and Related Orobanchaceae. Ambio 35 6 Furthermore, Spallek et al (2013) https://onlinelibrary.wiley.com/doi/full/10.1111/mpp.12058 citing Parker 2009 (which we have not been able to access so far) refers to five species of economic importance. Only five Striga species are currently of economic importance,

43	51	The greatest damage to crops is caused by three species: <i>Striga</i> asiatica, <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine</i> <i>coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum</i> <i>bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza</i> <i>sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna</i> <i>unguiculata</i> (cowpea), Convolvulaceae , Euphorbiaceae and <i>Nicotiana</i> <i>tabacum</i> (tobacco. Solanaceae)	C	 with S. hermonthica causing by far the most serious damage to sub-Saharan cereal production, followed by S. asiatica, S. gesnerioides and, to a far lesser extent, S. aspera and S. forbesi Benth. A reference is needed to support the statement made in S. gesnerioides (last sentence) Csurhes et al., 2016 is a risk assessment from Australia. Firstly, it better to use the primary references (which there are many) and secondly the summary in the RA states that three species can cause 7 billion in damage – in this paragraph, the wayit can be read is that two species (S. asiatica and S. hermonthica) reduce crop yields by USD 7 billion. The use of some in 'with some impacts on Saccharum spp. (sugarcane) and Oryza sativa (dryland rice)' is not clear is it to a lesser extent than the aforementioned? Is this really the case for rice? , Editorial To avoid any misunderstanding we would suggest to write Fabaceae, especially Vigna inguiculata (cowpea), as follows Fabaceae (especially Vigna unguiculata (cowpea)), Category : TECHNICAL EPPO Does these families include crop species injuried by Striga spp. or does they refer to wild plants? Maybe useful to specify because for all other taxa cited, a name of common crop is given. Category : TECHNICAL
44	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on	С	EPPO Correct the mistake when writing Eragostis tef on Eragrostis tef in Latin <i>Category : EDITORIAL</i>

-				
		Saccharum spp. (sugarcane) and Oryza sativa (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). S. gesnerioides is the only Striga species that attacks a dicotyledon host and usually infects Fabaceae, especially Vigna unguiculata (cowpea), Convolvulaceae, Euphorbiaceae and Nicotiana tabacum (tobacco, Solanaceae).		
45	5 51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>EragostisEragrostis</i> tef (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	Australia spelt incorrectly as Eragostis <i>Category : EDITORIAL</i>
46	5 51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. <u>Striga</u> asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Р	United States of America When the species name is at the beginning of a sentence, use the entire word Striga and not just S. <i>Category : EDITORIAL</i>
47	7 51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in <u>many parts</u> of the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	Japan Add " many parts of". Both species are not distributed all over the world. <i>Category : SUBSTANTIVE</i>

48	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	Japan Delete "by USD 7 billion every year". There are various ways of taking data on yield losses (e.g. sample size of fields are different case by case), so the figures varies depending on the situation. The specific figure may induce misleading. <i>Category : SUBSTANTIVE</i>
49	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	С	Kenya Striga asiatica The first word in a sentence , the genera is written in full not as an initial. <i>Category : TECHNICAL</i>
50	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two <u>pests species</u> attack grain crops and cereals, including <i>Zea mays</i> (maize), <i>Pennisetum</i> spp. (pearl millet), <i>Eleusine coracana</i> (finger millet), <i>Panicum</i> spp., <i>Eragostis tef</i> (teff) and <i>Sorghum bicolor</i> (sorghum), with some impacts on <i>Saccharum</i> spp. (sugarcane) and <i>Oryza sativa</i> (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes <i>et al.</i> , 2016). <i>S. gesnerioides</i> is the only <i>Striga</i> species that attacks a dicotyledon host and usually infects Fabaceae, especially <i>Vigna unguiculata</i> (cowpea), Convolvulaceae, Euphorbiaceae and <i>Nicotiana tabacum</i> (tobacco, Solanaceae).	Ρ	Japan editorial revision <i>Category : EDITORIAL</i>
51	51	The greatest damage to crops is caused by three species: <i>Striga asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> (Mohamed <i>et al.</i> , 2001). <i>S. asiatica</i> and <i>S. hermonthica</i> are among the most economically damaging weeds in the world. In Africa, these two pests attack grain crops and cereals, including <i>Zea mays</i> (maize),	Р	China Eragrostis tef (teff). Here the name of crop should be Eragrostis tef (teff). <i>Category : EDITORIAL</i>

	 Pennisetum spp. (pearl millet), Eleusine coracana (finger millet), Panicum spp., EragostisEragrostis tef (teff) and Sorghum bicolor (sorghum), with some impacts on Saccharum spp. (sugarcane) and Oryza sativa (dryland rice), and can reduce the crop yield value by USD 7 billion every year (Ejeta, 2007; Csurhes et al., 2016). S. gesnerioides is the only Striga species that attacks a dicotyledon host and usually infects Fabaceae, especially Vigna unguiculata (cowpea), Convolvulaceae, Euphorbiaceae and Nicotiana tabacum (tobacco, Solanaceae). 		
52 52	² <u>S. Striga</u> asiatica is native to Africa, India, and China (APHIS, 2011) and may represent a series of related species (Mohamed <i>et al.</i> , 2001). It has spread to parts of North America and the Asia Pacific region (Nail <i>et al.</i> , 2014).	Р	United States of America see above Category : EDITORIAL
53 5	³ <i>S. gesnerioides</i> is found throughout much of Africa, the Arabian peninsula and the Indian subcontinent. This parasite is particularly damaging to <i>Vigna unguiculata</i> (cowpea) (Musselman and Parker, 1981a). <i>S. gesnerioides</i> is quite variable, with morphotypes associated with different hosts.	С	United States of America see above Category : EDITORIAL
54 5	³ <i>S. gesnerioides</i> is found throughout much of Africa, the Arabian peninsula and the Indian subcontinent. This parasite is particularly damaging to <i>Vigna unguiculata</i> (cowpea) (Musselman and Parker, 1981a). <i>S. gesnerioides</i> is quite variable, with morphotypes associated with different hosts.	С	Indonesia Indonesia proposes to write the full scientific name of the plant only on first mention in the text. So "Vigna unguiculata" become "V. unguiculata" etc <i>Category : EDITORIAL</i>
55 5	 S. gesnerioides is found throughout much the most parts of Africa, the Arabian peninsula and the Indian subcontinent. This parasite is particularly damaging to Vigna unguiculata (cowpea) (Musselman and Parker, 1981a). S. gesnerioides is quite variable, with morphotypes associated with different hosts. 	Ρ	Iran Category : EDITORIAL
56	 S. hermonthica is native to savannah ecosystems where wild grasses (Poaceae, such as Andropogon species and Setaria sphacelata) are the hosts. However, S. hermonthica infestation of crops such as Z. mays, Sorghum bicolor, Pennisetum spp. and Panicum spp. can cause devastating yield losses, and the problem is increasing (Ejeta, 2007). 	С	European Union Homogenize, genus name in full, or only full at first mention and then abbreviated. <i>Category : EDITORIAL</i>
57	S. hermonthica is native to savannah ecosystems where wild grasses (Poaceae, such as Andropogon species and Setaria sphacelata) are the hosts. However, S. hermonthica infestation of crops such as Z. mays, Sorghum bicolor, Pennisetum spp. and Panicum spp. can cause devastating yield losses, and the problem is increasing (Ejeta, 2007).	С	European Union Are `wild grasses (Poaceae, such as Andropogon species and Setaria sphacelata)' natural hosts? <i>Category : TECHNICAL</i>
58 5	S. hermonthica is native to savannah ecosystems where wild grasses (Poaceae, such as Andropogon species and Setaria sphacelata) are the hosts. However, S. hermonthica infestation of crops such as Z. mays, Sorghum bicolor, Pennisetum spp. and Panicum spp. can cause devastating yield losses, and the problem is increasing (Ejeta, 2007).	С	EPPO Are `wild grasses (Poaceae, such as Andropogon species and Setaria sphacelata)' natural hosts? Category : TECHNICAL

59	54	<i>S. hermonthica</i> is native to savannah ecosystems where wild grasses (Poaceae, such as <i>Andropogon</i> species and <i>Setaria sphacelata</i>) are the hosts. However, <i>S. hermonthica</i> infestation of crops such as <i>Z. mays</i> , <i>Sorghum bicolor</i> , <i>Pennisetum</i> spp. and <i>Panicum</i> spp. can cause devastating yield losses, and the problem is increasing (Ejeta, 2007).	С	EPPO Homogenize, genus name in full, or only full at first mention and then abbreviated. <i>Category : EDITORIAL</i>
60	54	<i>S. hermonthica</i> is native to savannah ecosystems where wild grasses (Poaceae, such as <i>Andropogon</i> species and <i>Setaria sphacelata</i>) are the hosts. However, <i>S. hermonthica</i> infestation of crops such as <i>Z. mays</i> , <i>Sorghum bicolor</i> , <i>Pennisetum</i> spp. and <i>Panicum</i> spp. can cause devastating yield losses, and the problem is increasing becoming worse (Ejeta, 2007).	Ρ	United States of America Better language Category : EDITORIAL
61	54	<i>S. hermonthica</i> is native to savannah ecosystems where wild grasses (Poaceae, such as <i>Andropogon</i> species and <i>Setaria sphacelata</i>) are the hosts. However, <i>S. hermonthica</i> infestation of crops such as <i>Z. mays</i> , <i>Sorghum bicolor</i> , <i>Pennisetum</i> spp. and <i>Panicum</i> spp. can cause devastating yield losses, and the problem is increasing (Ejeta, 2007).	С	Indonesia Indonesia proposes to change " Sorghum bicolor" become "S. bicolor" <i>Category : EDITORIAL</i>
62	55	Unlike Genus Orobanche in the same family (<i>Orobanchaceae</i>) is worldwide known as another economically damaging parasitic weed. However, unlike <i>Striga</i> , plants of the related genus <i>Orobanche</i> lack chlorophyll and are fleshy with scale- like leaves and smaller flowers that are never red or pink. <i>Striga</i> is entirely Old World and tropical whereas <i>Orobanche</i> is more widespread and is present in both temperate and semitropical regions (Joel <i>et al.</i> , 2007).	Ρ	Japan Although Striga and Orobanche species parasitize different hosts in different parts of the world, the reason why information about Orobanche is described here is not clear. <i>Category : SUBSTANTIVE</i>
63	55	Unlike <i>Striga</i> , plants of the related genus <i>Orobanche</i> lack chlorophyll and are fleshy with scale-like leaves and smaller flowers that are never red or pink. <i>Striga</i> is entirely Old World and tropical whereas <i>Orobanche</i> is more widespread and is present in both temperate and semitropical regions (Joel <i>et al.</i> , 2007).	С	European Union It is important to know if you consider Orobanche s. I The genus Phelipanche is generally distinguished from Orobanche s. s Phelipanche have usually purple-blue flowers. Some Orobanche species, such as Orobanche sanguinea or Orobanche gracilis, have garnet red, reddish or pink flowers. <i>Category : SUBSTANTIVE</i>
64	55	Unlike <i>Striga</i> , plants of the related genus <i>Orobanche</i> lack chlorophyll and are fleshy with scale-like leaves and smaller flowers that are never red or pink. <i>Striga</i> is entirely Old World and tropical whereas <i>Orobanche</i> is more widespread and is present in both temperate and semitropical regions (Joel <i>et al.</i> , 2007).	C	EPPO It is important to know if you consider Orobanche s. I The genus Phelipanche is generally distinguished from Orobanche s. s Phelipanche have usually purple-blue flowers. Some Orobanche species, such as Orobanche sanguinea or Orobanche gracilis, have garnet red, reddish or pink flowers. <i>Category : SUBSTANTIVE</i>
65	55	Unlike <i>Striga</i> , plants of the related genus <i>Orobanche</i> lack chlorophyll and are fleshy with scale-like leaves and smaller flowers that are never red or pink. <i>Striga</i> is entirely Old World and tropical whereas <i>Orobanche</i> is more widespread and is present in both temperate and semitropical regions (Joel <i>et al.</i> , 2007).	С	China This Protocol describes Striga, not Orobanche. It is necessary to define Striga's semi-parasitic weeds and elaborate their nutritional characteristics. <i>Category : SUBSTANTIVE</i>

66	57	The time to flowering of the <i>Striga</i> species varies. For example, <i>S. gesnerioides</i> flowers as it emerges from the soil, whereas <i>S. asiatica</i> and <i>S. hermonthica</i> begin flowering about four weeks after emergence (Berner <i>et al.</i> , 1996). Most <i>Striga</i> species are self-pollinating, but <i>S. hermonthica</i> and <i>S. aspera</i> are out-crossers, requiring insects for pollination (Aigbokhan <i>et al.</i> , 1998). Some <i>Striga</i> seeds can tolerate short-term waterlogging (Nail <i>et al.</i> , 2014). The temperature response of <i>S. asiatica</i> appears to affect both the relative suitability of a location for growth and its cold tolerance limits. The minimum temperature for development has been found to be 20 °C; the upper limit for growth, 42 °C; and the optimal temperature range for growth, 30–34 °C (Patterson <i>et al.</i> , 1982).	Ρ	United States of America If talking about all Striga specie, then "the" is not needed; unless this is intended to address only several particular species mentioned in this paragraph. <i>Category : EDITORIAL</i>
67	57	The time to flowering of the <i>Striga</i> species varies varies according to the <i>Striga</i> species and environment conditions. For example, <i>S. gesnerioides</i> flowers as it emerges from the soil, whereas <i>S. asiatica</i> and <i>S. hermonthica</i> begin flowering about four weeks after emergence (Berner <i>et al.</i> , 1996). Most <i>Striga</i> species are self-pollinating, but <i>S. hermonthica</i> and <i>S. aspera</i> are out-crossers, requiring insects for pollination (Aigbokhan <i>et al.</i> , 1998). Some <i>Striga</i> seeds can tolerate short-term waterlogging (Nail <i>et al.</i> , 2014). The temperature response of <i>S. asiatica</i> appears to affect both the relative suitability of a location for growth and its cold tolerance limits. The minimum temperature for development has been found to be 20 °C; the upper limit for growth, 42 °C; and the optimal temperature range for growth, 30–34 °C (Patterson <i>et al.</i> , 1982).	Ρ	Singapore The added words to the first sentence provided a better explanation of the sentences to come. <i>Category : EDITORIAL</i>
2. Taxono	omic Info	rmation		
68	66	Synonyms: Striga hirsuta Benth.	С	European Union We propose to modify this synonym and add other ones according with the EPPO data: Buchnera hirsuta, Striga lutea, Striga lutea var. lutea. <i>Category : SUBSTANTIVE</i>
69	66	Synonyms: Striga hirsuta Benth.	С	EPPO We propose to modify this synonym and add other ones according with the EPPO data: Buchnera hirsuta, Striga lutea, Striga lutea var. lutea <i>Category : SUBSTANTIVE</i>
70	66	Synonyms: Striga hirsuta Benth.	C	United States of America The USDA GRIN database lists other synonyms to consider: Basionym: Buchnera asiatica L. (=) Striga coccinea Benth. (=) Striga lutea auct. nonn. https://npgsweb.ars- grin.gov/gringlobal/taxonomydetail.aspx?id=102305 Category : TECHNICAL
71	67	Striga asiatica var. lutea (Lour.) M.R.Almeida	С	European Union The EPPO Secretariat now uses the `plant of the world list' as a

72	67			reference as it is regularly updated. This list includes the following synomyms Plants of the world list: • Buchnera aquatica Wight ex Steud. • Buchnera asiatica L. • Buchnera coccinea Benth. • Campuleia coccinea Hook. • Striga coccinea (Hook.) Benth. • Striga coccinea (Hook.) Benth. • Striga eustriga Steud. • Striga hirsuta (Benth.) Benth. • Striga lutea Lour. • Striga parvula Miq. • Striga phoenicea Benth. • Striga posenicea Benth. • Striga zangebarica Klotzsch Ref POWO (2019) "Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved 25 08 2019". Category : SUBSTANTIVE
72	67	Striga asiatica var. lutea (Lour.) M.R.Almeida	c	EPPO The EPPO Secretariat now uses the 'plant of the world list' as a reference as it is regularly updated. This list includes the following synomyms Plants of the world list: • Buchnera aquatica Wight ex Steud. • Buchnera asiatica L. • Buchnera coccinea Benth. • Campuleia coccinea Hook. • Striga coccinea (Hook.) Benth. • Striga eustriga Steud. • Striga hirsuta (Benth.) Benth. • Striga lutea Lour. • Striga parvula Miq. • Striga poenicea Benth. • Striga poenicea Benth
73	67	Striga asiatica var. lutea (Lour.) M.R.Almeida Buchnera asiatica L.Striga asiatica	Ρ	China
		var. humilis (Benth.) D.Y. HongStriga lutea var. bicolor Kuntze		reference . http://www.tropicos.org/Name/29200215?tab=synonyms Information needs to be complete. <i>Category : SUBSTANTIVE</i>

74	70	Synonyms: Buchnera gesnerioides Willd.	С	United States of America Other synonyms listed in GRIN database:
				• (=) Striga chloroleuca Dinter
				• (=) Striga orchidea Hochst.
				nttps://npgsweb.ars- arin.gov/gringlobal/taxonomydetail.aspy?id=102302
				Category : TECHNICAL
75	71	Buchnera orobanchoides R Br. Strigg chloroleuca Dinter	Р	European Union
		Buchuler of obtainentoines Tribit		This synonym was missing.
				Category : SUBSTANTIVE
76	71	Buchnera orobanchoides R.Br. <u>Striga chloroleuca Dinter</u>	Р	EPPO
				Inis synonym was missing.
77	72	Strigg orobanchoides Bonth Strigg ablorolouge Dintor	Р	China
,,	12	Singa orobancholaes Benui. <u>Singa chioroleaca Dinter</u>		reference :
				http://www.tropicos.org/Name/292036152tab=syponyms
				Information needs to be complete.
				Category : SUBSTANTIVE
3.1 Sampli	ng and s	sample submission		
78	80	The samples taken from imported consigments should be submitted to a laboratory	Ρ	Argentina
		for inspection.		We suggest to delete Section 3.1 and to move the first paragraph
				to the end of section 3.1.1
70	80	The complex taken from imported consignants consignments should be submitted	D	
15	00	The samples taken from imported consignents consignments should be sublinited	· ·	spelt incorrectly as consigments
		to a laboratory for inspection.		Category : EDITORIAL
80	80	The samples taken from imported consigments should be submitted to a laboratory	Р	Uruguay
		for inspection.		
01	00		6	Category : TECHNICAL
81	80	The samples taken from imported consigments should be submitted to a laboratory	C	Uruguay We suggest to delete Section 3.1 and to move the first paragraph
		for inspection.		to the end of section 3.1.1
				Category : TECHNICAL
82	80	The samples taken from imported consigments should be submitted to a laboratory	Р	Peru
		for inspection.		
83	80	The complex taken from imported consistents should be submitted to a laboratory.	D	Category : TECHNICAL
63	80	The samples taken from imported consigments should be submitted to a laboratory	Г	Indonesia proposes to change mistyping
		for inspection.		"consigments" become "consignments"
				Category : EDITORIAL
84	80	The samples taken from imported consigments should be consignments are	Ρ	Japan
		inspected and if necessary submitted to a the laboratory for inspection further		Not all countries take the same process described in the text (i.e.
	1	diagnostic analysis.		text should be revised according to inspection purpose and the
	1			method of inspection that can actually be taken.
			1	Category : TECHNICAL

85	80	This section does not cover plants and plant debris because seeds are mainly	Р	Japan
		introduced into countries through contaminated consignments. The samples taken		The content of "3. Detection" section covers only seeds but there
		from imported consignents should be submitted to a laboratory for inspection.		is no explanation why only seeds are targeted in the section. A
				consignments is mainly seed of Striga rather than plants and
				debris.
				Category : SUBSTANTIVE
86	80	The samples taken from imported consignents should be submitted to a laboratory	Ρ	Kenya
		for inspection.analysis		
87	80	The complex taken from imported consignments consignments should be submitted	D	Singapore
07	00	The samples taken from imported consignents <u>consignments</u> should be sublinited		spelling error for consignments
		to a laboratory for inspection.		Category : EDITORIAL
88	80	The samples taken from imported consignments consignments should be submitted	Р	Thailand
		to a laboratory for inspection.		
			_	Category : EDITORIAL
89	80	The samples taken from imported consigments should be submitted to a laboratory	Р	COSAVE
		for inspection.		Category · TECHNICAL
90	81	When surveys are carried out to detect <i>String</i> in fields, there are several detection	Р	Japan
		methods, such as visual examination of the symptoms of Strigg infestation on		The method of survey is not only analyzing soil seed banks but
		includes, such as visual examination of the symptoms of Surga intestation on		also included visual examination of the symptoms of Striga
		<u>cultivated crops and the presence of Surga plants above ground in fields, and</u>		infestation on cultivated crops and the presence of Striga plants
		diagnostic analysis of soil seed banks. when soil seed banks are usually sampled.		"visual examination of Striga plants above ground in fields" and
		Soil-analysed, soil samples are collected and submitted to the laboratory for further		"analyzing soil seed banks" may be better to be added as
		diagnostic analysis.		examples.
				(For reference)
				spp in Benin Nigeria and Togo Proceedings of the Nova Scotian
				Institute of Science, 39(1):1-9
				Atsbha Gebreslasie, Taye Tessema, Ibrahim Hamza and Demeke
				Nigussie, 2016. Abundance and distribution of Striga (Striga
				hermonthica (Del.) Benth.) infestation in selected sorghum
				Ethionia African Journal of Agricultural Research 11(45) 4674-
				4682
				Category : SUBSTANTIVE
91	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually	С	European Union
		sampled. Soil samples are collected and submitted to the laboratory for further		Add plants and their rhizomes affected by Striga spp. in the list of
		diagnostic analysis.		samples necessary for sampling.
02	81	When surveys are corried out to detect String in fields, soil and hould are usually	D	
52	01	when surveys are carried out to detect <i>striga</i> in news, son seed banks are usually		We suggest to delete Section 3.1 and to move the first paragraph
		sampled. Soil samples are collected and submitted to the laboratory for further		to the end of section 3.1.1
		diagnostic analysis.		Category : TECHNICAL

93	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	С	EPPO Add plants and their rhizomes affected by Striga spp. in the list of samples necessary for sampling. <i>Category : SUBSTANTIVE</i>
94	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	C	United States of America Most of the guidelines provided here do not refer on how to detect Striga in the soil, instead it focuses on consignments. Suggest removing this paragraph or adding more information about how to handle soil samples later in the document. <i>Category : TECHNICAL</i>
95	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	Р	Uruguay We suggest to delete section 3.1, see comment above <i>Category : TECHNICAL</i>
96	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	P	Peru Se sugiere eliminar toda esta sección y mover el párrafo al final de la sección 3.1.1 Category : TECHNICAL
97	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	С	COSAVE Se sugiere eliminar toda esta sección y mover el párrafo al final de la sección 3.1.1 We suggest to delete Section 3.1 and to move the first paragraph to the end of section 3.1.1 <i>Category : TECHNICAL</i>
98	81	When surveys are carried out to detect <i>Striga</i> in fields, soil seed banks are usually sampled. Soil samples are collected and submitted to the laboratory for further diagnostic analysis.	Ρ	COSAVE Category : TECHNICAL
3.1.1 Samp	oling pro	pcedures		
99	82	3.1.1 Sampling procedures procedures from consignments	P	Japan Information in this sub-section is just for sampling procedures from imported/exported consignments not for sampling procedures for field survey Category : SUBSTANTIVE
100	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	C	European Union What is meant exactly by contains intact seeds with a homogenous or uniform distribution,? Not clear what guidance is given there <i>Category : TECHNICAL</i>
101	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>).	Р	European Union Delete 'lot' - it is redundant. <i>Category : EDITORIAL</i>

		Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.		
102	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous commodity, such as processed grain, flour or uniform distributionnon-pelleted animal feed, that are suspected to have been contaminated with Striga should be sampled according to in accordance with ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected. The samples taken from imported consignment should be submitted to have been contaminated with a laboratory for inspection <i>Striga</i> should be sampled in accordance with ISPM 31.	P	Argentina Consignment lots is redundant as per definition in ISPM 5. Text simplified for a better reading. Last sentence moved from first paragraph of section 3.1 <i>Category : TECHNICAL</i>
103	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	С	EPPO What is meant exactly by contains intact seeds with a homogenous or uniform distribution? Not clear what guidance is given there <i>Category : TECHNICAL</i>
104	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	Ρ	EPPO Delete 'lot' <i>Category : EDITORIAL</i>
105	83	A consignment <u>or</u> lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	Ρ	United States of America correct meaning Category : EDITORIAL
106	83	A consignment lot of seeds, grain, or other agricultural commodity such as processed grain, flour or non-pelleted animal feed, that contains intact seeds are suspected to have been contaminated with a homogenous or uniform distributionStriga, should be sampled according to ISPM 31 (<i>Methodologies for</i> <i>sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected. The samples taken from imported consignments	Ρ	Uruguay Consignment lot is redundant as per definition in ISPM 5. Text simplified for better reading. Last sentence moved from first paragraph in section 3.1 <i>Category : TECHNICAL</i>

		should be submitted to have been contaminated with a laboratory for inspection String should be sampled in accordance with ISPM 31		
107	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous comodity, such as processed grain, flour_or uniform distributionnon-pelleted animal feed, that are suspected have been contaminated with Striga should be sampled according to sampled in accordance withto ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected. The samples taken from imported consignment should be submitted to have been contaminated with a laboratory for inspection. <i>Striga</i> should be sampled in accordance with ISPM 31.	P	Peru Los lotes del envío es redundante con respecto a lo establecido por la NIMF 5. Texto simplificado para una mejor compresión de la lectura. La última oración fue movida al primer párrafo de la sección 3.1. <i>Category : TECHNICAL</i>
108	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	С	Indonesia Indonesia proposes to add a sentence that reveals the possibility of weed dispersal through livestock faeces <i>Category : TECHNICAL</i>
109	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM 31.	С	Indonesia Indonesia proposes to combine two sentences in this paragraph. <i>Category : SUBSTANTIVE</i>
110	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous-commodity, such as processed grain, flour or uniform distributionnon-pelleted animal feed, that are suspected to have been contaminated with Striga should be sampled according to in accordance with ISPM 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are suspected. The samples taken from imported consignment should be submitted to have been contaminated with a laboratory for inspection. <i>Striga</i> should be sampled in accordance with ISPM 31.	Ρ	COSAVE Consignment lots is redundant as per definition in ISPM 5. Text simplified for a better reading. Last sentence moved from first paragraph of section 3.1 <i>Category : TECHNICAL</i>
111	83	A consignment lot of seeds, grain, or other agricultural commodity that contains intact seeds with a homogenous or uniform distribution, should be sampled according to <u>ISPM-ISPM No.</u> 31 (<i>Methodologies for sampling of consignments</i>). Consignments of processed grain, flour or non-pelleted animal feed that are	Ρ	Ghana Category : EDITORIAL

		suspected to have been contaminated with <i>Striga</i> should be sampled in accordance with ISPM ISPM No. 31					
3.1.2 Sub-sa	3.1.2 Sub-sampling of the working sample for inspection						
112	84	3.1.2 Sub-sampling of the working sample for inspection	P	Japan Paragraph 84 - 86 are the prcess of sampling under the International Seed Testing Association (ISTA). International Seed Testing Rules Table 2A (ISTA, 2018)describes the sample size to inspect all sampled seeds (e.g. germination, disease, moisture) comprehensively. The rule does not apply for detection of Striga seeds contamination from imported consignments of seeds or grains. The sample size for inspection of Striga seeds from consignments should be decided in accordance with ISPM31. <i>Category : SUBSTANTIVE</i>			
113	85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	C	Brazil The proposed text describes the necessary details for obtaining a proper sample for Striga determination. It is also worth noting that, according to ISTA, submitted samples to be tested by seed testing labs for Striga and quality testing (purity, other seeds and germination) must be two independent samples with 25 000 seeds each (1 for Striga testing and 1 for quality testing) or the composite sample must have with at least 50 000 seeds to be divided by the lab. <i>Category : TECHNICAL</i>			
114	85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species	С	 European Union This paragraphe is absolutely unclear. It should be rewritten to provide the appropriate guidance for sampling. Information should be provided on the volume of soil to form the most representative sample in the field survey should be indicated. The ISTA reference should be replaced by ISTA 2019. <i>Category : SUBSTANTIVE</i> 			

	and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures		
115 85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	С	Argentina As per general comment, we suggest to simplify the description of the sampling procedure <i>Category : TECHNICAL</i>
116 85	<u>Samples submitted to a laboratory should be drawn from a composite sample,</u> which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	Ρ	Japan Paragraph 84 - 86 are the prcess of sampling under the International Seed Testing Association (ISTA). International Seed Testing Rules Table 2A (ISTA, 2018)describes the sample size to inspect all sampled seeds (e.g. germination, disease, moisture) comprehensively. The rule does not apply for detection of Striga seeds contamination from imported consignments of seeds or grains. The sample size for inspection of Striga seeds from consignments should be decided in accordance with ISPM31. <i>Category : SUBSTANTIVE</i>
117 85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg	С	EPPO This paragraphe is absolutely unclear it should be rewritten to provide the appropriate guidance for sampling.

		sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays</i> , <i>O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.		Information should be provided on the volume of soil to form the most representative sample in the field survey should be indicared The ISTA reference should be repalced by ISTA 2019 <i>Category : SUBSTANTIVE</i>
118	85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	C	Uruguay We suggest the TPDP to simplify the description of the sampling procedure as per our general comment <i>Category : SUBSTANTIVE</i>
119	85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species	С	Gambia When the whole lot is less than 25-000 seeds, the whole lot should be examined without sub-sampling procedures, provided that its weight is not significantly less than the minimum sample weight <i>Category : TECHNICAL</i>

		and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.		
1	20 85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	С	Peru De acuerdo al comentario general, se sugiere simplificar la descripción del procedimiento de muestreo. <i>Category : SUBSTANTIVE</i>
1	21 85	Samples submitted to a laboratory should be drawn from a composite sample, which is a mixture of primary samples. The sample size recommended by the International Seed Testing Association is 25 000 seeds or a maximum of 1 kg sample (ISTA, 2018). The weight of 25 000 seeds can be referenced from International Seed Testing Rule Table 2A (ISTA, 2018), or determined by the laboratory with a thousand-seed weight test. For example, the weight of 25 000 seeds will be 1 kg for <i>Z. mays, O. sativa</i> and <i>Hordeum vulgare</i> and 20 g for <i>Panicum</i> spp. (millet, ISTA (2018), Table 2A). Immediately after sampling, submitted samples should be packed and sealed in an appropriate bag or container protected from contamination or leaking, with clear labels on seed lot, crop species and associated information to allow sample traceability. When a small package is less than 25 000 seeds, an appropriate bag sampling procedure should be performed after determining how many bags are equivalent to 25 000 seeds. When the whole lot is less than 25 000 seeds, the whole lot should be examined without sub-sampling procedures.	С	COSAVE De acuerdo a nuestro comentario general se sugiere simplificar la descripción del procedimiento de muestreo As per general comment, we suggest to simplify the description of the sampling procedure Category : SUBSTANTIVE
1	22 86	When receiving a submitted sample, the laboratory should analyse <u>test</u> a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample	Р	Brazil We are suggesting these changes because ISTA recommends the "spoon method" instead of the "hand halving method" to obtain

		weight, the <u>a working</u> sample weight should <u>must</u> be reduced to the minimum quantity obtained using a mechanical sample divider (e.g. a rotary or soil divider) or by <u>stirring the composite sample with a hand halving methodspoon, taking a</u> <u>minimum of three subsamples with a spoon from different positions and combining</u> them to create the subsample of the required size. The sample should be rejected when its weight is significantly less than the minimum sample weight. <u>The working</u> <u>sample to be tested must be weighed in grams to the minimum number of decimal</u> places indicated in Table 4.1 of the ISTA International Rules for Seed Testing (for samples weighing less than 1.0000 g, 4 decimal places; for samples between 1.000 and 9.999 g, 3 decimal places; for samples between 100.0 and 999.9 g, 1 decimal place and for samples weighing more than 1000 g, 0 decimal place)		the submitted subsample (working sample) for Striga determination and also alerts that the submitted subsamples must be weighed in grams to the minimum number of decimal places indicated in Table 4.1 of the ISTA International Rules for Seed Testing (2019). <i>Category : TECHNICAL</i>
123	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	C	European Union A mechanical sample (seed) divider should not be used as the use of the divider may contaminate the machinary (a seed divider is also not used for the determination of the health of seeds). E.g. in certain countries, if a larger sample is received the sample is divided by hand only. <i>Category : TECHNICAL</i>
124	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	С	European Union The text in different parts mentions submitted samples, working samples, samples. This should be harmonized. <i>Category : SUBSTANTIVE</i>
125	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	Ρ	Japan Paragraph 84 - 86 are the prcess of sampling under the International Seed Testing Association (ISTA). International Seed Testing Rules Table 2A (ISTA, 2018)describes the sample size to inspect all sampled seeds (e.g. germination, disease, moisture) comprehensively. The rule does not apply for detection of Striga seeds contamination from imported consignments of seeds or grains. The sample size for inspection of Striga seeds from consignments should be decided in accordance with ISPM31. <i>Category : SUBSTANTIVE</i>
126	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample	С	EPPO A mechanical sample (seed) divider should not be used as the use of the divider may contaminate the machinary (a seed divider is also not used for the determination of the health of seeds). E.g.

		weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.		in Israel if a larger sample is received the sample is divided by hand only. <i>Category : TECHNICAL</i>
127	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	С	EPPO The text in different parts mentions submitted samples, working samples, samples. This should be harmonized. <i>Category : SUBSTANTIVE</i>
128	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	С	Indonesia Indonesia seek more clarification on the last sentence: significantly less than the minimum sample weight ? <i>Category : TECHNICAL</i>
129	86	When receiving a submitted sample, the laboratory should analyse a minimum of 25 000 seeds of the commodity, which may or may not constitute the whole submitted sample. If the submitted sample is more than the minimum sample weight, the sample weight should be reduced to the minimum quantity using a mechanical sample divider (e.g. a rotary or soil divider) or by a hand-halving method. The sample should be rejected when its weight is significantly less than the minimum sample weight.	С	COSAVE Consignment lots is redundant as per definition in ISPM 5. Text simplified for a better reading. Last sentence moved from first paragraph of section 3.1 <i>Category : SUBSTANTIVE</i>
3.2 Detecti	on met	hod for seeds of Striga species		
130	87	3.2 Detection method for seeds of <i>Striga</i> species	С	European Union Add information relevant for soil testing: 3.2.3 Saturated solutions The method of saturated solutions is based on the difference of the specific gravity of the mineral and organic part of the soil. The average soil sample is poured into the prepared solution (mixtures of bromoform and diethyl ether in 4 parts, by volume with the addition of water so that the specific gravity is 1.7, or use a potash solution with a specific gravity of 1.57 (530 g per 1 l of water) or zinc chloride with a specific gravity of 1.96 (700 g per 1 l of water)), carefully shaken and stirred with a glass rod, with the mineral particles settling to the bottom, and organic weed seeds float to the surface.

				This method is specified in the national standard of certain countries.
131	87	3.2 Detection method for seeds of <i>Striga</i> species	С	EPPO Add information relevant for soil testing 3.2.3 Saturated solutions The method of saturated solutions is based on the difference of the specific gravity of the mineral and organic part of the soil. The average soil sample is poured into the prepared solution (mixtures of bromoform and diethyl ether in 4 parts, by volume with the addition of water so that the specific gravity is 1.7, or use a potash solution with a specific gravity of 1.57 (530 g per 1 l of water) or zinc chloride with a specific gravity of 1.96 (700 g per 1 l of water)), carefully shaken and stirred with a glass rod, with the mineral particles settling to the bottom, and organic weed seeds float to the surface. This method is specified in the national standard of Ukraine <i>Category : SUBSTANTIVE</i>
132	88	The analysis of the working sample for the presence of <i>Striga</i> seeds is achieved by either washing and filtration or by dry sieving the working sample. Note that according to ISTA (2019), both methods are not suitable for use on treated, coated or pelleted seeds.	P	Brazil this is a recommendation stated in the ISTA International Rules for Seed Testing (2019) to avoid any incorrect use of the tests for the determination of Striga. With treated seed the treatment can cover and mask the characters of the seed and the seeds are so tiny that they are difficult to distinguish from other inert matter that is also covered by treatment. With coated seed the seeds are so tiny they are most likely washed away with the coating material. <i>Category : TECHNICAL</i>
133	88	The analysis of the working sample for the presence of <i>Striga</i> seeds is achieved by either washing and filtration or by dry sieving the working sample.	C	China The description how to separate Striga seeds from samples is too simple. It needs to be specified in how to separate from large sample samples or from soil, such as how size sieves or bags to use for sample washing. Striga seeds are very tiny. So how to separate from large sample samples or from soil, such as how size sieves or bags to use for sample washing, need to be specified in detail. <i>Category : SUBSTANTIVE</i>
134	89	After washing or sieving, the filter paper, sieves and screenings should be carefully examined with a stereo microscope of at least $40 \times$ magnification. A clean soft brush may be used to transfer the screenings into a suitable container (e.g. Petri dish), making sure there are no remaining seeds in the brush or the collecting pan.	С	Brazil According to ISTA (2019), the minimum acceptable magnification of a microscope to be used for Striga determination is x10. In ISTA audits, the use of soft brushes is not allowed to clean seeds with bigger sizes than Striga because the electrostatic effect between the seeds and the brush may difficult its complete cleaning, which may cross contaminate samples. <i>Category : TECHNICAL</i>

-				
135	89	After washing or sieving, the filter paper, sieves and screenings should be carefully examined with a stereo microscope of at least 40× magnification. A clean soft brush may be used to transfer the screenings into a suitable container (e.g. Petri dish), making sure there are no remaining seeds in the brush or the collecting pan.	С	European Union Better examined with a stereo microscope of at least 100× magnification. <i>Category : TECHNICAL</i>
136	89	After washing or sieving, the filter paper, sieves and screenings should be carefully examined with a stereo microscope of at least 40× magnification. A clean soft brush may be used to transfer the screenings into a suitable container (e.g. Petri dish), making sure there are no remaining seeds in the brush or the collecting pan.	С	EPPO Better examined with a stereo microscope of at least 100× magnification <i>Category : TECHNICAL</i>
137	89	After washing or sieving, the filter paper, sieves and screenings should be carefully examined with a stereo microscope of at least 40× magnification. A clean soft brush may be used to transfer the screenings into a suitable container (e.g. Petri dish), making sure there are no remaining seeds in the brush or the collecting pan.	C	Gambia A clean soft brush may be used to transfer the screenings into a suitable container (e.g. Petri dish), making sure there are no remaining seeds in the brush or the collecting pan. Use of water could be more appropriate to ensure effective transfer of screenings instead of clean soft brush as the seeds are so small and the chance of them remaining on the brush is high <i>Category : TECHNICAL</i>
3.2.1 Wash	ing and	I filtration		
138	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	C	European Union It is necessary to clarify which surfactant should be used. <i>Category : SUBSTANTIVE</i>
139	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	European Union This paragraph comes from ISTA protocol Chapter 4: Determination of other seeds by number Point 4.5.3.3. In Israel the washed in water system is used but instead of filter paper permemant filters are used- The top filter has a diameter of 21cm and holes that change according to the size of the seeds being tested – usually of 500 microns and a bottom filter which is 11cm in diameter is made of two layers PVC covering and nylon with holes of 100-120 microns. We recommed that this system should be added and in any case the filtering system should not be confined to the use of filter paper only. Illustration can be provided by an Israelian expert or EPPO on request. <i>Category : TECHNICAL</i>
140	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	European Union To facilitate detection of Striga seeds in soil sample, the soil is air dried using a thermostat or a dry air cabinet. A washing method, is subsequently performed to allow the seeds to be suspended and then collected on the surface. <i>Category : TECHNICAL</i>

142 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed and in aversystem is used but instaad of filter paper growthited samples may require washing in small batches but the whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. C C EPPO To the seed set of the size of the seed set on the size of the set on the size of the se	141	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	EPPO It is necessary to clarify which surfactant should be <i>Category : SUBSTANTIVE</i>
143 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed. C C C C C C C To facilitate detection of Striga seeds in soil sample, the soil is air dried using a thermostat or a dry air cabinet. A washing method, is subsequently performed to allow the seeds to be suspended and then collected on the surface. Category : TECHNICAL 144 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper disk. (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed. P United States of America For clarity Category : TECHNICAL 145 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. C C China 145 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. C China The kinds of surfacta	142	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	EPPO This paragraph comes from ISTA protocol Chapter 4: Determination of other seeds by number Point 4.5.3.3. In Israel the washed in water system is used but instead of filter paper permemant filters are used– The top filter has a diameter of 21cm and holes that change according to the size of the seeds being tested – usually of 500 microns and a bottom filter which is 11cm in diameter is made of two layers PVC covering and nylon with holes of 100-120 microns. We recommed that this system should be added and in any case the filtering system should not be confined to the use of filter paper only. An illustration provided by Israelian experts can be provided by the EPPO Secretariat <i>Category : TECHNICAL</i>
144 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper disk_(15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed. P United States of America 145 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample is hould be analysed. C C Inina 145 91 The whole sample is may require washing in small batches but the whole sample is hould be analysed. C C Inina 145 91 The seed weight-to-water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed. C C Inina 145 91 South de analysed. South de analysed. C C Inina <td>143</td> <td>91</td> <td>The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.</td> <td>С</td> <td>EPPO To facilitate detection of Striga seeds in soil sample, the soil is air dried using a thermostat or a dry air cabinet. A washing method, is subsequently performed to allow the seeds to be suspended and then collected on the surface. <i>Category : TECHNICAL</i></td>	143	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	EPPO To facilitate detection of Striga seeds in soil sample, the soil is air dried using a thermostat or a dry air cabinet. A washing method, is subsequently performed to allow the seeds to be suspended and then collected on the surface. <i>Category : TECHNICAL</i>
145 91 The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample C China The kinds of surfactants need to be indicated. Different surfactants have different function. Category : TECHNICAL 3.2.2 Dry sieving P Ghana	144	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper <u>disk (15 cm diameter)</u> , which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	Ρ	United States of America For clarity <i>Category : TECHNICAL</i>
3.2.2 Dry sieving 146 92 3.2.2 Dry sieving P Ghana	145	91	The whole sample is washed in water, the wash water filtered, and the residue collected on the surface of a filter paper (15 cm diameter), which is then analysed. The seed weight-to-water volume ratio should be 1:2; for example, 250 g of seed added to 500 mL of water containing one or two drops of surfactant. Large submitted samples may require washing in small batches but the whole sample should be analysed.	С	China The kinds of surfactants need to be indicated. Different surfactants have different function. <i>Category : TECHNICAL</i>
	3.2.2 Dry si 146	eving 92	3.2.2 Dry sieving	Р	Ghana

				Category : EDITORIAL
147	93	The whole submitted subsample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period-until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	Ρ	European Union Delete 'for a longer period' (line 4) as this is not needed since the final objective is described (until the finer material is fully separated). Category : EDITORIAL
148	93	The whole submitted subsample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	С	European Union If the shaking is manual, the sample should be shaken vigorously over a longer period (if possible indicate the appropriate oscillation frequency during manual shaking). <i>Category : TECHNICAL</i>
149	93	The whole submitted subsample sample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	P	Argentina For consistency <i>Category : TECHNICAL</i>

150	93	The whole submitted subsample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	С	EPPO Delete 'for a longer period (line 4) this is not needed as the final objective is described (until the finer material is fully separated) <i>Category : EDITORIAL</i>
151	93	The whole submitted subsample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	С	EPPO If the shaking is manual, the sample should be shaken vigorously over a longer period (if possible indicate the appropriate oscillation frequency during manual shaking) <i>Category : TECHNICAL</i>
152	93	The whole submitted subsample sample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	Ρ	Uruguay For consistency <i>Category : TECHNICAL</i>

The formula for the formula formula for the formula formula formula formula for the formula f	
 154 93 The whole submitted subsample is "dry" sieved using a sieve (250 μm and 150 μm sieves: 150 μm sieve for clean <i>Striga</i> seeds, 250 μm sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μm. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray. 	tic
 155 93 The whole submitted subsample is "dry" sieved using a sieve (250 μm and 150 μm sieves: 150 μm sieve for clean <i>Striga</i> seeds, 250 μm sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μm. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray. 	eeds of Illy of
156 93 The whole submitted subsample is "dry" sieved using a sieve (250 μm and 150 μm sieves: 150 μm sieve for clean Strigg seeds 250 μm sieve for Strigg seeds and C For consistency	

		debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>String</i> seeds to go through to the collection tray. The same		Category : TECHNICAL
		technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of		
		mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the size and the flour particles allowed to go through to the collection		
		tray.		
157	93	The whole submitted subsample sample is "dry" sieved using a sieve (250 μ m and 150 μ m sieves: 150 μ m sieve for clean <i>Striga</i> seeds, 250 μ m sieve for <i>Striga</i> seeds and debris) and a bottom collection tray that is shaken by a mechanical shaker (e.g. 40 shakes/second for at least two minutes) or shaken manually. If the shaking is manual, the sample should be shaken vigorously for a longer period until the finer material is fully separated. The size of the holes in the screen-sieve should be adequate to retain the commodity seeds on top and allow the finer dust-like material including <i>Striga</i> seeds to go through to the collection tray. The same technology could be used for separation of <i>Striga</i> seeds from flour using a sieve of mesh size 70–100 μ m. In such situations it is expected that the seeds are retained on top of the sieve and the flour particles allowed to go through to the collection tray.	Ρ	Cosave Category : TECHNICAL
4.1 Identific	cation r	nethod		
158	95	4.1 Identification method	C	China It is suggested to add modern molecular marker identification methods, such as bio-barcode. It may refer to ISPM 27 Diagnostic protocols for regulated pests DP 19: Sorghum halepense. The means of identification need to be diversified and should be more accurate. It is suggested to add modern molecular marker identification methods, such as bio-barcode. <i>Category : SUBSTANTIVE</i>
159	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular	C	European Union What is mean with 'Striga seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade' ? Why is it needed in this section ? <i>Category : TECHNICAL</i>

		studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.		
160	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	C	European Union Important data from molecular research on Striga is available (refer to information sources for these studies). <i>Category : SUBSTANTIVE</i>
161	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds Morphological identification of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	Ρ	Argentina Text deleted because is redundant, it was already mentioned in section 3.1. This section should contain only information on the identification method. This paragraph mentions taxonomic identification keys that are not included in the protocol and they should be added. <i>Category : TECHNICAL</i>
162	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	С	EPPO What is mean with 'Striga seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade'? Why is it needed in this section. <i>Category : TECHNICAL</i>
163	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple	С	EPPO Important data from molecular research on Striga is available (refer to information sources for these studies) <i>Category : SUBSTANTIVE</i>

		pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.		
164	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	С	United States of America Is this document proposing that both identification methods are needed for identification. Or can it be either method independently? <i>Category : TECHNICAL</i>
165	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. Morphological identification of <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	Ρ	Uruguay Text deleted because is redundant (it was already mentioned in section 3.1). This section should contain only information on the identification method. In addition, this paragraph mentions taxonomic identification keys that are not included in the Protocol and they should be added <i>Category : TECHNICAL</i>
166	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. Morphological identification of <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes .	P	Peru El texto se borra porque es redundante, ya fue mencionado en el punto 3.1. <i>Category : TECHNICAL</i>

167	96	Classification and identification of <i>Striga</i> species depends largely on floral characters. Inspection, however, usually targets seeds of imported agricultural commodities such as grain, seeds and feed, which are suspected to be contaminated with <i>Striga</i> seeds. Morphological identification of <i>Striga</i> seeds can contaminate seeds or grain by multiple pathways via transportation, storage and trade. Morphological identification of <i>Striga</i> seeds or plants is based on known reference specimens, literature descriptions and taxonomic identification keys. Considerable data from molecular studies of <i>Striga</i> are available and could be helpful for species determination, but until methods can be simplified and uniform they are of limited value for phytosanitary purposes.	Ρ	COSAVE El texto se borra porque es rebundante, ya fue mencionado en el punto 3.1. Esta sección debería contener solamente información sobre método de identificación. En este parráfo se menciona clave de identificación taxonómica que no se incluyen en el protocolo y debería incluirse. Text deleted because is redundant, it was already mentioned in section 3.1. This section should contain only information on the identification method. This paragraph mentions taxonomic identification keys that are not included in the protocol and they should be added. <i>Category : TECHNICAL</i>
4.2 Identific	cation d	if seeds of Striga species	-	
168	97	4.2 Identification of seeds of <i>Striga</i> species	P	United States of America The methods included are the current standard operating procedures for North American and international seed analysts under the AOSA and ISTA rules. Based on professional seed botanist experience with the dry sieving method for detection of dust-like seeds, a PCR-based test for Striga would be optimal when coupled with a wet sieving method. This combined approach would help mitigate issues of laboratory contamination inherent in working with dust-like seeds if samples are positive. In addition, as a practical issue it is exceedingly difficult to decontaminate equipment used for dividing and dry sieving of seed or grain samples contaminated with dust like seeds such as Striga and other Orobanchaceae parasites, therefore dedicated equipment/ facilities may be needed for high- risk samples. Finally, it should be noted that the dry sieve and wash filtration methods are not suitable for testing pesticide treated seed or seeds that are coated or pelleted. This notation is specifically made in both the International Seed Testing Association Rules for Seed Testing (both methods) and in the Association of Official Seed Analysts Rules for Testing Seeds (dry sieve method), from which the draft protocols for detection of Striga in seed samples. <i>Category : TECHNICAL</i>
169	98	Seed identification of <i>Striga</i> species is based on seed size, shape, surface texture and colour. The capsules of <i>Striga</i> are loculicidal, containing a large number of seeds in various shapes, including elliptic, ovate, rectangular, D-shaped, trigonous, rhombic, or irregular (Figure 1)irregular. However, capsules are usually broken, damaged or removed in most contaminated commodities during their processing. <i>Striga</i> seeds (Figure 1) are dust-like particles, 0.2–0.6 mm long and 0.1–0.3 mm wide; their surface has twisted and longitudinally linear ridges; they are	Ρ	Japan Move "(Figure 1)" after "Striga seeds" in 3rd sentence. The information of morphological features of Striga to compare the features of Orobanche in Figure 2 is better in 3rd sentence than in 2nd sentence. <i>Category : EDITORIAL</i>

	translucent; and seed colour varies from light brown to dark brown, from orange to golden brown, and from grey to light black, glistening under high-magnification microscopy (e.g. 20× to 40× magnification). The embryo is linear, and a sparse endosperm is present.		
170	Other dust-like seeds are those of the genera <i>Orobanche</i> (Figure 2), <i>Phelipanche</i> and <i>Alectra</i> , which are a similar size but have a regularly reticulated surface. Seeds of <i>Alectra</i> are truncate at the apex. In general, the seed surface of <i>Orobanche</i> and <i>Phelipanche</i> is deeply honeycombed and lacks the spiral, ornamented ridges of <i>Striga</i> (Musselman and Parker, 1981b). Using a microscope, these seeds can be distinguished from <i>Striga</i> . Pictures of seeds of <i>S. asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> are shown in Figures 1A to 1E and seed characteristics are summarized in Table 1.	C	European Union Text and table 1 are useful but not sufficient to clearly distinguish the three Striga spp. from other Orobanchaceae species. Would it be possible to propose an identification tool with a dichotomical key? <i>Category : SUBSTANTIVE</i>
171	Other dust-like seeds are those of the genera <i>Orobanche</i> (Figure 2), <i>Phelipanche</i> and <i>Alectra</i> , which are a similar size but have a regularly reticulated surface. Seeds of <i>Alectra</i> are truncate at the apex. In general, the seed surface of <i>Orobanche</i> and <i>Phelipanche</i> is deeply honeycombed and lacks the spiral, ornamented ridges of <i>Striga</i> (Musselman and Parker, 1981b). Using a microscope, these seeds can be distinguished from <i>Striga</i> . Pictures of seeds of <i>S. asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> are shown in Figures 1A to 1E and seed characteristics are summarized in Table 1.	С	EPPO Text and table 1 are useful but not sufficient to clearly distinguish the three Striga spp. from other Orobanchaceae species. Would it be possible to propose an identification tool with a dichotomical key? <i>Category : SUBSTANTIVE</i>
172	 Other dust-like seeds are those of the genera Orobanche (Figure 2), Phelipanche and Alectra, which are a similar size but have a regularly reticulated surface. Seeds of Alectra are truncate at the apex. In general, the seed surface of Orobanche and Phelipanche is deeply honeycombed and lacks the spiral, ornamented ridges of Striga (Musselman and Parker, 1981b). Using a microscope, these seeds can be distinguished from Striga. Pictures of seeds of S. asiatica, S. gesnerioides and S. hermonthica are shown in Figures 1A to 1E and seed characteristics are summarized in Table 1. 	С	United States of America Should we know how to discriminate S. asiatica, S. gesnerioides and S. hermonthica from other Striga species? Is that also within the scope of this document? <i>Category : TECHNICAL</i>
173	Other dust-like seeds are those of the genera <i>Orobanche</i> (Figure 2), <i>Phelipanche</i> and <i>Alectra</i> , which are a similar size but have a regularly reticulated surface. Seeds of <i>Alectra</i> are truncate at the apex. In general, the seed surface of <i>Orobanche</i> <u>Orobanche (Figure 2)</u> and <i>Phelipanche</i> is deeply honeycombed and lacks the spiral, ornamented ridges (i.e. twisted and longitudinally linear ridges) of Striga (Musselman and Parker, 1981b). Using a microscope, these seeds can be distinguished from <i>Striga</i> . Pictures of seeds of <i>S. asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> are shown in Figures 1A to 1E and seed characteristics are summarized in Table 1.	Ρ	Japan Move "(Figure 2)" after "surface of Orobanche" in 3rd sentence. The information of morphological features of Orobanche to compare the features of Striga in Figure 1 is better in 3rd sentence than in 1st sentence. The expression of morphological features of Striga seeds here is different from the expression of 4th sentence in the previous paragraph [98]. Therefore, in order to complement information about the morphological features of Striga seeds here, add words

				"twisted and longitudinally linear ridges" which are described in 4th sentence in paragraph 98. <i>Category : SUBSTANTIVE</i>
174	99	Other dust-like seeds are those of the genera <i>Orobanche</i> (Figure 2), <i>Phelipanche</i> and <i>Alectra</i> , which are a similar size but have a regularly reticulated surface. Seeds of <i>Alectra</i> are truncate at the apex. In general, the seed surface of <i>Orobanche</i> and <i>Phelipanche</i> is deeply honeycombed and lacks the spiral, ornamented ridges of <i>Striga</i> (Musselman and Parker, 1981b). Using a microscope, these seeds can be distinguished from <i>Striga</i> . Pictures of seeds of <i>S. asiatica</i> , <i>S. gesnerioides</i> and <i>S. hermonthica</i> are shown in Figures 1A to 1E and seed characteristics are summarized in Table 1.	C	Japan It might be better to add photographs that show morphological features of Alectra if any. <i>Category : TECHNICAL</i>
175	100	Table 1. Summary of main characteristics of seed morphology of the three most economically damaging <i>Striga</i> species	С	European Union We propose to add information about quarantine species Striga euphrasioides to table 1 for further identification. <i>Category : SUBSTANTIVE</i>
176	100	Table 1. Summary of main characteristics of seed morphology of the three most economically damaging <i>Striga</i> species	С	EPPO We propose to add information about quarantine species Striga euphrasioides to table 1 for further identification <i>Category : SUBSTANTIVE</i>
177	101	Seed characters	C	China The differences among the three seed characteristics listed in the table are not obvious. It is difficult to recognize the three species clearly according to one or several morphological traits of the seeds. Can you make an index key for those three species's identification here? It may refer to ISPM 27 Diagnostic protocols for regulated pests DP 19: Sorghum halepense. <i>Category : SUBSTANTIVE</i>
178	103	Size- <u>Length (</u> mm)	Ρ	Australia Suggested change to be more precise. (unit given is mm) <i>Category : EDITORIAL</i>
179	111	Lengthwise lines or ridge linesLongitudinal ridges with reticular spinal processes, with reticular spinal processes	Ρ	Australia suggested to provide extra clarity Category : EDITORIAL
180	113		С	United States of America It is really difficult to read the scale for the pictures <i>Category : TECHNICAL</i>
181	114	S. generioides gesnerioides	Р	Argentina Category : EDITORIAL
182	114	S. generioides gesnerioides	Ρ	Australia Clarification on spelling Category : EDITORIAL
183	114	S. generioides	С	Uruguay S. gesnerioides Category : EDITORIAL

184	114	S . generioides<u>.gesnerioides</u>	Р	Peru
185	114	S. generioides	С	Category : EDITORIAL Indonesia this species may Striga gesnerioides Category : EDITORIAL
186	114	S. generioides gesnerioides	Р	COSAVE Category : EDITORIAL
187	115	0.25	С	United States of America Parker and Riches: Parasitic weeds of the World, page 21,Indicates 0.33 mm Category : TECHNICAL
188	119		С	Indonesia Indonesia proposes to put the image of one seed per species with the scale must clearly represent the size of the seed <i>Category : TECHNICAL</i>
4.2.1 Capsu	le mor	phology of important species of Striga		
189	126	4.2.1 Capsule morphology of important species of <i>Striga</i>	С	China Fruit (capsule) characteristic pictures were only shown with scanning pictures of S. asiatica, but two other major harmful species were missing. In addition, there are no detailed morphological pictures. It is suggested to add detailed pictures of the fruits. <i>Category : SUBSTANTIVE</i>
190	127	Capsule morphology is important in separating major groups of <i>Striga</i> species. The number of ribs in the calyx and their width and ornamentation can be helpful in determining taxa. See Figure 3 and Ramaiah <i>et al.</i> (1983) for images of seed capsules.	С	Japan It might be better to add a picture to see whole seed capsule because Figure 3 shows only part of seed capsule. Category : SUBSTANTIVE
191	128	Morphological differences in the capsules can be used for identification. The capsule of <i>S. asiatica</i> is 7 mm long and 2 mm wide; the capsule of <i>S. gesnerioides</i> is 10–20 mm long and 3 mm wide; while the capsule of <i>S. hermonthica</i> is 12–15 mm long and 2–2.5 mm wide (Musselman and Hepper, 1986).	С	European Union If possible, add a picture to illustrate the capsule. <i>Category : TECHNICAL</i>
192	128	Morphological differences in the capsules can be used for identification. The capsule of <i>S. asiatica</i> is 7 mm long and 2 mm wide; the capsule of <i>S. gesnerioides</i> is 10–20 mm long and 3 mm wide; while the capsule of <i>S. hermonthica</i> is 12–15 mm long and 2–2.5 mm wide (Musselman and Hepper, 1986).	С	EPPO If possible, add a picture to illustrate the capsule <i>Category : TECHNICAL</i>
4.2.2 Seed	morpho	ology of Striga asiatica		
193	130	The seed of <i>S. asiatica</i> is golden brown, very small and oval in shape with a netted surface featuring lengthwise lines or ridge lines (Figures 1A to 1C). These ridges, which often form a twisted pattern, have reticular spinal processes. The surface texture of the seed coat is key to identification (Global Invasive Species Database:	С	European Union Seeds have triangular, rhombus, or elongated shape. Under the microscope and increase of 100-200x times on the surface of the seed is wavy ribbed, and at an increase of 650 x - porosity. (Manual on quarantine and other dangerous pests, diseases and weed plants).

	IUCN, n.d.). The seed typically weighs 3.7 μg a being one-twentieth of the length of a tobacco set	nd is about 0.33 mm long, this eed (Cochrane and Press, 1997).		Why comparing to tobacco seed is relevant? For inspectors of area where no tobacco is cultivated it is probably not very meaningful. <i>Category : TECHNICAL</i>
194 1	The seed of <i>S. asiatica</i> is golden brown, very sm surface featuring lengthwise lines or ridge lines which often form a twisted pattern, have reticula texture of the seed coat is key to identification (IUCN, n.d.). The seed typically weighs 3.7 μg a being one-twentieth of the length of a tobacco se	all and oval in shape with a netted (Figures 1A to 1C). These ridges, ar spinal processes. The surface Global Invasive Species Database: nd is about 0.33 mm long, this eed (Cochrane and Press, 1997).	C	EPPO Why comparing to tobacco seed is relevant? For inspectors of area where no tobacco is cultivated it is probably not very meaningful. <i>Category : EDITORIAL</i>
195 1	The seed of <i>S. asiatica</i> is golden brown, very small a featuring lengthwise lines or ridge lines (Figures 1A a twisted pattern, have reticular spinal processes. The to identification (Global Invasive Species Database: 13.7 µg and is about 0.33 mm long, this being one-two (Cochrane and Press, 1997).	nd oval in shape with a netted surface to 1C). These ridges, which often form e surface texture of the seed coat is key (UCN, n.d.). The seed typically weighs entieth of the length of a tobacco seed	C	EPPO Seeds have triangular, rhombus, or elongated shape. Under the microscope and increase of 100-200x times on the surface of the seed is wavy ribbed, and at an increase of 650 x - porosity. (Manual on quarantine and other dangerous pests, diseases and weed plants) <i>Category : TECHNICAL</i>
4.2.4 Seed mo	phology of Striga hermonthica			
196 1	4 Seeds of <i>S. hermonthica</i> (Figure 1E) are about 0.30 r their colour varying from light to dark brown. They h prominent lengthwise lines, often appearing twisted.	nm long, usually elliptic or ovate, with ave a honeycombed surface with	С	European Union We suggest to add a morphological description of the seed of Striga euphrasioides after this paragraph. <i>Category : SUBSTANTIVE</i>
197 1	4 Seeds of <i>S. hermonthica</i> (Figure 1E) are about 0.30 r their colour varying from light to dark brown. They h prominent lengthwise lines, often appearing twisted.	nm long, usually elliptic or ovate, with ave a honeycombed surface with	С	EPPO We suggest to add a morphological description of the seed of Striga euphrasioides after this paragraph <i>Category : SUBSTANTIVE</i>
4.3 Plant iden	fication			
198 1	5 4.3 Plant identification	C	С	Argentina It is suggested to include the identification of plants (section 4.3) before to the identification of sedes (Section 4.2) <i>Category : TECHNICAL</i>
199 1	5 4.3 Plant identification	C	С	Uruguay We suggest to include section 4.3 (Plant identification) before section 4.2 (Seed identification) <i>Category : TECHNICAL</i>
200 1	5 4.3 Plant identification	C	C	COSAVE Se recomienda poner la identificación de plantas (sección 4.3) previo a la identificación de las semillas (4.2). It is suggested to include the identification of plants (section 4.3) before to the identification of sedes (Section 4.2) Category : TECHNICAL
201 1	6 <i>Striga</i> seedlings appear underground as white te host plants via haustoria. This means that by the emerge, <i>Striga</i> is already growing below the soil	nder shoots attached to the roots of time the host stems I surface and damaging the host.	С	European Union We suggest to change this line. It is unclear why the flowering occurs only after rain, without counting other biotic factors. <i>Category : SUBSTANTIVE</i>

		The mature plants have green leaves sparsely covered by short white, stiff hairs that give a scabrous feel to the leaf surface (like sandpaper). The plants are usually 15–30 cm high but may be as high as 60 cm. They flower after rains (with a flower length below 1.5 cm). When a suitable host is present, <i>Striga</i> seeds require one to two weeks of moisture and temperatures of at least 20 °C (with 25–35 °C being optimal) before they germinate. The morphological characteristics of the three most economically damaging species are listed below, and summarized in Table 2.		
202	136	<i>Striga</i> seedlings appear underground as white tender shoots attached to the roots of host plants via haustoria. This means that by the time the host stems emerge, <i>Striga</i> is already growing below the soil surface and damaging the host. The mature plants have green leaves sparsely covered by short white, stiff hairs that give a scabrous feel to the leaf surface (like sandpaper). The plants are usually 15–30 cm high but may be as high as 60 cm. They flower after rains (with a flower length below 1.5 cm). When a suitable host is present, <i>Striga</i> seeds require one to two weeks of moisture and temperatures of at least 20 °C (with 25–35 °C being optimal) before they germinate. The morphological characteristics of the three most economically damaging species are listed below, and summarized in Table 2.	С	EPPO We suggest to change this line. It is unclear why the flowering occurs only after rain, without counting other biotic factors <i>Category : SUBSTANTIVE</i>
203	136	<i>Striga</i> seedlings appear underground as white tender shoots attached to the roots of host plants via haustoria. This means that by the time the host stems emerge, <i>Striga</i> is already growing below the soil surface and damaging the host. The mature plants have green leaves sparsely covered by short white, stiff hairs that give a scabrous feel to the leaf surface (like sandpaper). The plants are usually 15–30 cm high but may be as high as 60 cm. They flower after rainsrain (with a flower length below 1.5 cm). When a suitable host is present, <i>Striga</i> seeds require one to two weeks of moisture and temperatures of at least 20 °C (with 25–35 °C being optimal) before they germinate. The morphological characteristics of the three most economically damaging species are listed below, and summarized in Table 2.	Ρ	United States of America correction <i>Category : TECHNICAL</i>
204	136	Striga seedlings appear underground as white tender shoots attached to the roots of host plants via haustoria. This means that by the time the host stems emerge, Striga is already growing below the soil surface and damaging the host. The mature plants have green leaves sparsely covered by short white, stiff hairs that give a scabrous feel to the leaf surface (like sandpaper). The plants are usually 15–30 cm high but may be as high as 60 cm. They flower after rains (with a flower length below 1.5 cm). When a suitable host is present, Striga seeds require one to two weeks of moisture and temperatures of at least 20 °C (with 25–35 °C being optimal) before they germinate. The morphological characteristics of the three most economically damaging species are listed below, and summarized in Table 2.	С	Gambia This means that by the time the host stems emerge, Striga is already growing on the roots of the host below the soil surface and damaging the host. <i>Category : TECHNICAL</i>

205	137	Table 2. Summary of main characteristics of plant morphology of the three most economically damaging <i>Striga</i> species	C	European Union We propose to add information about quarantine species Striga euphrasioides to table 2 for further identification. <i>Category : SUBSTANTIVE</i>
206	137	Table 2. Summary of main characteristics of plant morphology of the three most economically damaging <i>Striga</i> species	С	EPPO We propose to add information about quarantine species Striga euphrasioides to table 2 for further identification <i>Category : SUBSTANTIVE</i>
207	138	Fundamental characters of floral apparatus	Ρ	Australia Suggested deletion of this line for two reasons.1. The title of table says summary of main characteristics of plant morphology. 2. Table contains data on non-floral plant parts. <i>Category : EDITORIAL</i>
208	140	Plant size <u>height</u> (cm)	Р	Australia Height is more precise than 'size' and the unit given is cm. <i>Category : TECHNICAL</i>
209	142	Pubescence	С	European Union Does this refer to the pubescence of the stem or pubescence of the flower? The title of the table "Fundamental characters of floral apparatus" could be misleading. <i>Category : SUBSTANTIVE</i>
210	142	Pubescence	С	EPPO Does this refer to the pubescence of the stem or pubescence of the flower? The title of the table "Fundamental characters of floral apparatus" could be misleading. <i>Category : SUBSTANTIVE</i>
211	146	10–30	С	United States of America Mohamed, K.I., Musselman, L.J. & Riches, C.R. 2001. The genus Striga (Scrophulariaceae) in Africa. Annals of the Missouri Botanical Garden, 88: 60–103. Mentions up to 40 cm tall. <i>Category : TECHNICAL</i>
212	152	11– <mark>25</mark>	С	United States of America Mohamed, K.I., Musselman, L.J. & Riches, C.R. 2001. The genus Striga (Scrophulariaceae) in Africa. Annals of the Missouri Botanical Garden, 88: 60–103. Mentions up to 30 cm tall. <i>Category : TECHNICAL</i>
213	155	Purple, pink or yellow, depending on host	С	United States of America Mohamed, K.I., Musselman, L.J. & Riches, C.R. 2001. The genus Striga (Scrophulariaceae) in Africa. Annals of the Missouri Botanical Garden, 88: 60–103. Ramaiah, K.V., Parker, C., Vasudeva Rao, M.J. & Musselman, L.J. 1983. Striga identification and control handbook. Information Bulletin No. 15. Patancheru, India, International Crops Research Institute for the Semi-Arid Tropics. 52 pp. Available at: http://oar.icrisat.org/1221/1/RA_00426.pdf (last accessed 28 January 2018).

				Describe the flower colors as creamy white and blue. Although one can see how blue might fit in with purple. <i>Category : TECHNICAL</i>
214	159	Usually unbranched <u>branched</u>	Р	Australia S. hermonthica is usually branched (para 169 row-1 confirms this). table 2 states 'usually unbranched'. Category : TECHNICAL
4.3.1 Striga	a asiatic	a		
215	164	4.3.1 Striga asiatica	С	European Union The description of each species should be consistent. Some information are only given for one or two species, thus being useless in order to compare and identify one of the 3 species. As requested for the seed identification, a small ID tool with dichotomical key would be much appreciated. <i>Category : SUBSTANTIVE</i>
216	164	4.3.1 Striga asiatica	С	EPPO The description of each species should be consistent. Some information are only given for one or two species, thus being useless in order to compare and identify one of the 3 species. As requested for the seed identification, a small ID tool with dichotomical key would be much appreciated. <i>Category : SUBSTANTIVE</i>
217	165	Annuals, 10–30 cm tall, entirely hirsute. Stems erect, square, sometimes branched. Leaf blade linear to narrowly lanceolate, 5–20 mm \times 1–4 mm. Flowers axillary, in a raceme. Calyx 4–8 mm, 10-ribbed; 5 lobes, as long as tube, subulate. Corolla usually red, rarely yellow or white; tube 0.8–1.5 cm, apically strongly curved; upper lip 2-lobed. Capsule ovate, enveloped in persistent calyx (Figure 4A).	С	European Union Stems - 15-50 cm, green, bulbous, branch, quadrangular, hollow, diameter 1-3 mm. The underground part of the stem is purple, cylindrical, slightly thicker than the aboveground, 2.5 -7.5 cm in length. (Illustrated guide to regulated pests in Ukraine) Leaves - sessile, linear or lanceolate. Each subsequent pair of leaves is located at right angles to the lower pair. In the underground part of the stem, the leaves are reduced to leathery - fleshy scales. The flowers are axillary, or collected in a loose apical droplet with two linear cymbals, which reach one third of the length of the calyx. The Calyx is tubular, length 5-8 mm, with 10 ribs, which are at the base of the capsule. Capsule is flat, elongated, slightly compressed from the sides; length of 3.2- 7.6 mm. (Manual on quarantine and other dangerous pests, diseases and weed plants) <i>Category : SUBSTANTIVE</i>
218	165	Annuals, 10–30 cm tall, entirely hirsute. Stems erect, square, sometimes branched. Leaf blade linear to narrowly lanceolate, $5-20 \text{ mm} \times 1-4 \text{ mm}$. Flowers axillary, in a raceme. Calyx 4–8 mm, 10-ribbed; 5 lobes, as long as tube, subulate. Corolla usually red, rarely yellow or white; tube 0.8–1.5 cm, apically strongly curved; upper lip 2-lobed. Capsule ovate, enveloped in persistent calyx (Figure 4A).	C	EPPO Stems - 15-50 cm, green, bulbous, branch, quadrangular, hollow, diameter 1-3 mm. The underground part of the stem is purple, cylindrical, slightly thicker than the aboveground, 2.5 -7.5 cm in length. (Illustrated guide to regulated pests in Ukraine) Leaves - sessile, linear or lanceolate. Each subsequent pair of leaves is located at right angles to the

				lower pair. In the underground part of the stem, the leaves are reduced to leathery - fleshy scales. The flowers are axillary, or collected in a loose apical droplet with two linear cymbals, which reach one third of the length of the calyx. The Calyx is tubular, length 5-8 mm, with 10 ribs, which are at the base of the capsule. Capsule is flat, elongated, slightly compressed from the sides; length of 3.2- 7.6 mm (Manual on quarantine and other dangerous pests, diseases and weed plants) <i>Category : SUBSTANTIVE</i>
219	165	Annuals, 10–30 cm tall, entirely hirsute. Stems erect, square, sometimes branched. Leaf blade linear to narrowly lanceolate, $5-20 \text{ mm} \times 1-4 \text{ mm}$. Flowers axillary, in a raceme. Calyx 4–8 mm, 10-ribbed; 5 lobes, as long as tube, subulate. Corolla usually red, rarely yellow or white; tube 0.8–1.5 cm, apically strongly curved; upper lip 2-lobed. Capsule ovate, enveloped in persistent calyx (Figure 4A).	С	Thailand The figures of rare colors of corolla of Striga asiatica should be provided in figure 4. <i>Category : SUBSTANTIVE</i>
4.3.2 Str	iga gesner	ioides		
220	166	4.3.2 Striga gesnerioides	C	United States of America Ramaiah, K.V., Parker, C., Vasudeva Rao, M.J. & Musselman, L.J. 1983. Striga identification and control handbook. Information Bulletin No. 15. Patancheru, India, International Crops Research Institute for the Semi-Arid Tropics. 52 pp. Available at: http://oar.icrisat.org/1221/1/RA_00426.pdf (last accessed 28 January 2018). Indicates a height of 0.5 m
221	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	С	European Union Perennial with branched reddish or yellow-green branched stem up to 50 cm high. Leaves are reduced to fleshy bursts. Striga does not form green leaves and is a complete parasite. The calyx is four-vertebrate. (Manual on quarantine and other dangerous pests, diseases and weed plants) Category : SUBSTANTIVE
222	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	C	European Union This information should be given also for S. asiatica. <i>Category : SUBSTANTIVE</i>

223	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10$ mm $\times 2-3$ mm. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal	C	European Union Unfortunately, it cannot be compared with S. asiatica for which only the tube length is given, not the whole corolla. <i>Category : SUBSTANTIVE</i>
224	167	length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001). Annual or weakly perennial or monocarpic, 11–25 cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, 5–10 mm \times 2–3 mm. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	C	European Union Give calyx length as for S. asiatica. <i>Category : SUBSTANTIVE</i>
225	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	C	EPPO Unfortunately, it is not comparable to S. asiatica for which only the tube length is given, not the whole corolla. <i>Category : SUBSTANTIVE</i>
226	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	С	EPPO Give calyx length as for S. asiatica. <i>Category : SUBSTANTIVE</i>
227	167	Annual or weakly perennial or monocarpic, $11-25$ cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	C	EPPO This information should be given also for S. asiatica. <i>Category : SUBSTANTIVE</i>
228	167	Annual or weakly perennial or monocarpic, 11–25 cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at	С	EPPO Perennial with branched reddish or yellow-green branched stem

		the soil surface. Stem square with obtuse angles; leaves appressed to the stem, $5-10 \text{ mm} \times 2-3 \text{ mm}$. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).		up to 50 cm high. Leaves are reduced to fleshy bursts. Striga does not form green leaves and is a complete parasite. The calyx is four-vertebrate.(Manual on quarantine and other dangerous pests, diseases and weed plants) <i>Category : SUBSTANTIVE</i>				
229	167	Annual or weakly perennial or monocarpic, 11–25 cm tall with many adventitious roots from the base. Usually light green or yellow green, succulent; many closely packed stems at the soil surface. Stem square with obtuse angles; leaves appressed to the stem, 5–10 mm × 2–3 mm. Leaves and stems puberulent, or almost glabrous. Corolla usually purple, rarely pink or yellow. Flowers opposite or alternate, mostly with two flowers for each node, rarely three, no fragrance. Bract and sepal of equal length; corolla 1.2–1.5 cm long (Figure 4B; Mohamed <i>et al.</i> , 2001).	С	Thailand The figure of rare colors of corolla of Striga gesnerioides should be provided in figure 4. <i>Category : SUBSTANTIVE</i>				
4.3.3 Striga hermonthica								
230	169	Annual, up to 90 cm tall. Stem square, furrowed; branched from middle, densely scabrous. Leaves 15–18 mm, opposite, linear or narrowly elliptic, longer than internodes; margin entire, veins obscure. Lower floral bracts 12–50 mm long and 2–5 mm wide, longer than calyx; upper bracts lanceolate, equal to or longer than calyx. Flowers opposite, forming a lax raceme denser above middle. Calyx 5-ribbed, 7–12 mm long; tube 5–10 mm long; sepal with 5 unequal lobes of 2–4 mm, shorter than corolla tube. Corolla pink or light purple, rarely white (Figures 4C and 4D; Mohamed <i>et al.</i> , 2001).	С	European Union Height -more than 60 cm. Stem - hair-rough, slightly branched, has few leaves. Leaves - lower - opposite; top regular. (GP Moskalenko Quarantine Weed Plants of Russia) <i>Category : SUBSTANTIVE</i>				
231	169	Annual, up to 90 cm tall. Stem square, furrowed; branched from middle, densely scabrous. Leaves 15–18 mm, opposite, linear or narrowly elliptic, longer than internodes; margin entire, veins obscure. Lower floral bracts 12–50 mm long and 2–5 mm wide, longer than calyx; upper bracts lanceolate, equal to or longer than calyx. Flowers opposite, forming a lax raceme denser above middle. Calyx 5-ribbed, 7–12 mm long; tube 5–10 mm long; sepal with 5 unequal lobes of 2–4 mm, shorter than corolla tube. Corolla pink or light purple, rarely white (Figures 4C and 4D; Mohamed <i>et al.</i> , 2001).	C	European Union Nice to give this information, but it would be worth to give it for the two other species as well. <i>Category : SUBSTANTIVE</i>				
232	169	Annual, up to 90 cm tall. Stem square, furrowed; branched from middle, densely scabrous. Leaves 15–18 mm, opposite, linear or narrowly elliptic, longer than internodes; margin entire, veins obscure. Lower floral bracts 12–50 mm long and 2–5 mm wide, longer than calyx; upper bracts lanceolate, equal to or longer than calyx. Flowers opposite, forming a lax raceme denser above middle. Calyx 5-ribbed, 7–12 mm long; tube 5–10 mm long; sepal with 5 unequal lobes of 2–4 mm, shorter than corolla tube. Corolla pink or light purple, rarely white (Figures 4C and 4D; Mohamed <i>et al.</i> , 2001).	С	EPPO Nice to give this information, but it would be worth to give it similarly for the two other species. <i>Category : SUBSTANTIVE</i>				
233	169	Annual, up to 90 cm tall. Stem square, furrowed; branched from middle, densely scabrous. Leaves 15–18 mm, opposite, linear or narrowly elliptic, longer than internodes; margin entire, veins obscure. Lower floral bracts 12–50 mm long and 2–5 mm wide, longer than	С	EPPO Height -more than 60 cm. stem - hair-rough, slightly branched, has few leaves.				

234	169	calyx; upper bracts lanceolate, equal to or longer than calyx. Flowers opposite, forming a lax raceme denser above middle. Calyx 5-ribbed, 7–12 mm long; tube 5–10 mm long; sepal with 5 unequal lobes of 2–4 mm, shorter than corolla tube. Corolla pink or light purple, rarely white (Figures 4C and 4D; Mohamed <i>et al.</i> , 2001). Annual, up to 90 cm tall. Stem square, furrowed; branched from middle, densely scabrous.	C	Leaves - lower - opposite; top regular. (GP Moskalenko Quarantine Weed Plants of Russia) <i>Category : SUBSTANTIVE</i>
		Leaves 15–18 mm, opposite, linear or narrowly elliptic, longer than internodes; margin entire, veins obscure. Lower floral bracts 12–50 mm long and 2–5 mm wide, longer than calyx; upper bracts lanceolate, equal to or longer than calyx. Flowers opposite, forming a lax raceme denser above middle. Calyx 5-ribbed, 7–12 mm long; tube 5–10 mm long; sepal with 5 unequal lobes of 2–4 mm, shorter than corolla tube. Corolla pink or light purple, rarely white (Figures 4C and 4D; Mohamed <i>et al.</i> , 2001).		The figure of rare color of corolla of Striga hermonthica should be provided in figure 4. Category : SUBSTANTIVE
235	170	<i>S. hermonthica</i> can be confused with <i>S. aspera</i> , which is a widespread species in sub-Saharan Africa that differs by the position of the bend in the corollacorolla (Figure 5). The bend is at the level of the calyx-mid-calyx in <u>S. aspera (Figure 5A)</u> <i>S. hermonthica</i> and the mid-calyx-level of the calyx in <u>S. hermonthica (Figure 5B)</u> <i>S. aspera</i> . Overall, <i>S. aspera</i> has smaller corollas, stems and leaves and is a more delicate plant (Figure 5)plant.	Ρ	Japan There are no description about Figure 5A and 5B. <i>Category : EDITORIAL</i>
236	170	<i>S. hermonthica</i> can be confused with <i>S. aspera</i> , which is a widespread species in sub-Saharan Africa that differs by the position of the bend in the corolla. The bend is at the level of the calyx in <i>S. hermonthica</i> and the mid-calyx in <i>S. aspera</i> . Overall, <i>S. aspera</i> has smaller corollas, stems and leaves and is a more delicate plant (Figure 5).	С	European Union (In future) Add to the diagnostic protocol others species of Striga spp. for example: Striga lutea Lour. and Striga euphrasioides Benth. <i>Category : SUBSTANTIVE</i>
237	170	<i>S. hermonthica</i> can be confused with <i>S. aspera</i> , which is a widespread species in sub-Saharan Africa that differs by the position of the bend in the corolla. The bend is at the level of the calyx in <i>S. hermonthica</i> and the mid-calyx in <i>S. aspera</i> . Overall, <i>S. aspera</i> has smaller corollas, stems and leaves and is a more delicate plant (Figure 5).	С	EPPO In future, add to the diagnostic protocol others species of Striga spp. for example: Striga lutea Lour. and Striga euphrasioides Benth. <i>Category : SUBSTANTIVE</i>
9. Figures				
238	202	9. Figures 题	C	Indonesia Indonesia proposes the consistency of the font on scale Category : EDITORIAL
239	205		С	China It seems to be no need to attach a special picture of Orobanche seeds here. Delete Figure2. Instead, its seed picture can be referred to the literature. The current protocol only describes Striga, not Orobanche. <i>Category : SUBSTANTIVE</i>
240	209	Figure 3. Scanning electron micrograph of seed capsule of <i>Striga asiatica</i> .	С	China Figure 3: Add the scanning electron micrographs of seed capsule of Striga gesnerioides and Striga hermonthica

				It's a direct reference to readers when they use scanning electron micrographs of seed capsule to identify the Striga seeds . <i>Category : TECHNICAL</i>
241	213	Photos courtesy of (A), (C) and (D) Lytton John Musselman, Old Dominion University, Norfolk, VA, United States of America; (B) Dinesh Valke, Thane, India, .	С	ChinaFigure 4: Add the pictures of the whole plant and different growth period of plant.It's better for readers to know the complete morphological characteristics of 3 kinds of plants, and make the standard even perfect.Category : TECHNICAL
242	214		С	China Figure 4B: Make the leaves and other organs out in the picture or put an enlarged detailed picture beside it. It's unable to see where the leaves and other organs are. <i>Category : TECHNICAL</i>