Special Session:
UG 99 Status, Management and Prevention

Wafa Khoury, AGP-FAO
Keith Cressman, AGP-FAO
Amor Yahyaoui, ICWIP-ICARDA

FAO, Rome 9 April 2008
Current Importance of Wheat Rusts

<table>
<thead>
<tr>
<th>Region</th>
<th>Yellow Rust</th>
<th>Leaf Rust</th>
<th>Stem Rust</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australasia</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>East Asia</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>South Asia</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>West Asia</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>Central Asia</td>
<td>Major</td>
<td>Major</td>
<td>Local</td>
</tr>
<tr>
<td>Russia/Ukraine</td>
<td>Local</td>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Middle East</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>North Africa</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>Eastern Africa</td>
<td>Major</td>
<td>Local</td>
<td>Major</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>Major</td>
<td>Local</td>
<td>Local</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>Local</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>Western Europe</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>North America</td>
<td>Major</td>
<td>Major</td>
<td>Minor</td>
</tr>
<tr>
<td>Central America</td>
<td>Major</td>
<td>Local</td>
<td>Minor</td>
</tr>
<tr>
<td>South America</td>
<td>Local</td>
<td>Major</td>
<td>Local</td>
</tr>
</tbody>
</table>
Trans-boundary wheat rust

Historical information shows records of wind borne spores moving across continents, although shorter distance movements are more common – often within distinct pathozones (or epidemiological regions?).

Virulent strain of wheat stripe rust (*Puccinia striiformis*) referred to as Vir.Yr9, appeared in Kenya 1980 then was recovered in Ethiopia in East Africa in 1986, Pakistan and Nepal in 1990 and reached South Asia in 1993.

Spread of Yellow rust followed prevalent current.
Heavy yield losses were incurred along the pathway of yellow rust from Egypt to Pakistan.
In **1999** a new strain of stem rust (*Puccinia graminis f.sp tritici*) occurred in Uganda, known as **Ug99** (www.globalrust.org).

Ug99 represents a much greater threat than Vir Yr9, Estimated 80% of current global wheat varieties are susceptible.
New Stem rust race: UG99

Stem rust Ug99 followed the expected migration but moved faster to Yemen

Ug99: Global threat
Can spread from East Africa to Asia, Europe, Australia, America
Such scary reach-out may increase the wheat price in the speculative global market. But who gains?
(Dr. S.Nagarajan-Rome meeting 3/6/07)
Global Rust Initiative - GRI

In 2005 Laureate Nobel Peace Prize, Dr. N.E. Borlaug launched an appeal to international community to combat The killer stem rust that emerged in Uganda in 1999 hence called Ug99

2005 Nairobi Rust Summit

CIMMYT, ICARDA, and World-wide Consortium heeded N. Borlaug’s call by forming the Global Rust Initiative (GRI)

Reminder from the past: “If we fail to keep agriculture moving in the less-developed nations, poverty will continue to grow, and the social upheaval that will ensue will become a global nightmare” N.E. Borlaug 1970
Virulence Spectrum of Ug99

<table>
<thead>
<tr>
<th>Origin</th>
<th>Resistance genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triticum aestivum</td>
<td>5, 6, 7a*, 7b, 8a, 8b, 9a, 9b, 9f, 15, 16, 18, 19, 20, 23, 28*, 29, 30, 41, 42</td>
</tr>
<tr>
<td>T. turgidum</td>
<td>2, 9d, 9e, 9g, 11, 12, 13*, 14*, 17</td>
</tr>
<tr>
<td>T. monococcum</td>
<td>21, 22, 35</td>
</tr>
<tr>
<td>T. timopheevi</td>
<td>36**, 37**</td>
</tr>
<tr>
<td>T. speltoides</td>
<td>32**, 39</td>
</tr>
<tr>
<td>T. tauschii</td>
<td>33**, 45</td>
</tr>
<tr>
<td>T. comosum</td>
<td>34</td>
</tr>
<tr>
<td>T. ventricosum</td>
<td>38</td>
</tr>
<tr>
<td>T. araraticum</td>
<td>40</td>
</tr>
<tr>
<td>Thinopyrum elongatum</td>
<td>24*, 25, 26, 43</td>
</tr>
<tr>
<td>Th. intermedium</td>
<td>44</td>
</tr>
<tr>
<td>Secale cereale</td>
<td>27*, 31, 1A.1R</td>
</tr>
</tbody>
</table>

* **Blue = effective (including moderate levels),
 * Virulence known to occur in other races
 ** Red = not effective,
 ** New Virulence (Ye), 2008
 ** Black = no data
With the long distance travel of rust spores, it is only a matter of time until Ug99 reaches across the Arabian Peninsula into the Near East, Mediter. region; and possibly eastern Europe, Russia, Central Asian countries, South Asia, East Asia, North America, and Australia.
Potential Risk Areas as expected
Approximate area affected by Ug99

- **CWANA**: 42 m. ha
- **Subcontinent**: 36 m. ha

Total: 78 m. ha

- Approximate production: 170 m. t. (Estimated)
- Southern Europe very vulnerable

Approx. losses could reach 17 m.t equivalent to more than 15 billion US$ (current wheat price)
Identification of Sources of Resistance to Stem Rust Race Ug99

Identification of current and retired wheat varieties and breeding lines with resistance to Ug99 will provide:

Alternatives for emergency replacement of susceptible varieties

Possible discovery of as of yet unknown resistance genes (both race specific and non-race specific, e.g., slow rusting)
Evaluation of breeding lines for resistance to Ug99

Screening at Njoro-Kenya (2006)

<table>
<thead>
<tr>
<th>Country</th>
<th>Tot</th>
<th>R/MR</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>84</td>
<td>3</td>
<td>81</td>
</tr>
<tr>
<td>China</td>
<td>118</td>
<td>2</td>
<td>116</td>
</tr>
<tr>
<td>Egypt</td>
<td>149</td>
<td>3</td>
<td>146</td>
</tr>
<tr>
<td>India</td>
<td>102</td>
<td>23</td>
<td>79</td>
</tr>
<tr>
<td>Iran</td>
<td>100</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>86</td>
<td>3</td>
<td>83</td>
</tr>
<tr>
<td>Nepal</td>
<td>105</td>
<td>2</td>
<td>103</td>
</tr>
<tr>
<td>Pakistan</td>
<td>105</td>
<td>6</td>
<td>99</td>
</tr>
<tr>
<td>Russia</td>
<td>35</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>Turkey</td>
<td>85</td>
<td>16</td>
<td>69</td>
</tr>
<tr>
<td>CIMMYT</td>
<td>886</td>
<td>226</td>
<td>660</td>
</tr>
<tr>
<td>ICARDA</td>
<td>1518</td>
<td>65</td>
<td>1453</td>
</tr>
<tr>
<td>Total</td>
<td>3372</td>
<td>352</td>
<td>3021</td>
</tr>
</tbody>
</table>

Intensive screening carried out annually at Kenya & Ethiopia Research Centers

Levels of resistance to Ug99-07

- Over 6000 accessions tested
- ✔️ 25% : CIMMYT-ICARDA
- ✔️ <2% NARS Res.Ug99
Accelerated Seed Multiplication

Berkume (Millennium). ETBW 4921:

ALD/CEP75630//CEP75234/PT7219/3/BUC/BJY/4/..

First year - Two crop seasons at Kulumsa, Ethiopia:
(26 tons of seed produced from initial 8 kg)
✓ 5 tons distributed to 300-500 small farmers (10-15 kg/each) at high risk area
✓ 10 Tons of seed will handled by NGO’s in remote areas not covered by ESE
✓ 10 tons multiplied by Ethiopian seed Enterprise (ESE)

Second year: Seed collected from previous recipients
➢ 114 tons available for planting – Main season in 2008
Special session: UG 99 Status, Management and Prevention

Berkume Released in Ethiopia in 2007

Carries Sr.24 resistance gene

Sr.24 defeated by Ug99 variant in Kenya (2007)

Sr.24 virulence not detected in Ethiopia

Eleven ICARDA bread wheat lines under testing in Ethiopia are being multiplied for further seed increase

Selected lines will be recommended for release in Ethiopia, Eritrea, Sudan, and Yemen

Twenty advanced bread wheat lines selected for durable resistance by CIMMYT and tested in Kenya, Ethiopia, and Yemen

Selected lines be evaluated by NARS in CWANA for yield performance, and eventual release within the next 3 years
Occurrence and Movement of Ug 99-TTKS

Ug99 detected: 1999 in Uganda “Ug99”
✓ In Yemen and Sudan (’06 samples) declared in 2007,
✓ In Iran (07 Samples) declared in 2008
Occurrence and Movement of Air borne Pathogens

Air borne diseases such as rusts are transboundary
- Have no restriction on their movement-Air borne
- Not quarantine disease-Regional & Global Monitoring
Special session: UG 99 Status, Management and Prevention

Current and Future Plans in wheat rust Management and Prevention
Special session: UG 99 Status, Management and Prevention

Current activities in wheat rust Management and Prevention
1. Disease Surveillance:
 • Regular national wheat disease surveys (incidence and severity of rusts)
 • Race analysis and virulence change monitoring
 • Field rust trap nurseries
 Importance of having both national agricultural research systems (NARS) and plant protection units of the MoA
 Capacity and infrastructure building

2. Breeding for durable resistance:
 • National breeding programmes
 • CG-Centers breeding programmes
 • Advanced research institutes and universities
 International screening nurseries in already infected areas (Kenya)
 Capacity building
3. **Seed multiplication and distribution:***
 - Identification of resistant varieties and testing them nationally (even if they are not the highest yielding)
 - Identification of most efficient national seed multiplication system (public, private, informal, NGOs,...)
 - Seed distribution system to the most vulnerable farmers

 *Importance of updating information on virulence shifts and movement of pathogen
 Capacity and infrastructure building

4. **Support to field management activities:**
 - Changes in planting dates, delayed planting
 - Use of varietal mixtures and patch planting
 - Use of short duration varieties
 - Use of fungicides under very serious conditions

 Capacity building
Current and Future Plans in wheat rust Management and Prevention

FAO is now a full partner in GRI (now BGRI and also includes Cornell University)

FAO’s role and comparative advantage

- Support in surveillance and monitoring systems:
 - Experience in Desert Locust Management
 - Adaptation of DL model for rust surveillance
 - Initiate rust monitoring system at AGP

- Direct working relationships with Ministries of Agriculture (especially the national plant protection services)
 - Reinforce Research-Plant protection working relationships

- FAO experience in risk management
 - Support national contingency planning
Experience in National Seed systems
- Work on national regulation and regional harmonization of regulation for seed exchange
- Work with formal public and private and informal seed sector
- Capacity building in seed quality production
- Work in emergencies and rehabilitation
 Reinforce CG-Center activities in replacement seed multiplication and distribution

Experience with participatory work with Farmers
- Network of trained farmers and Farmers Field School (FFS) Facilitators in the Ug99 risk region
- Trained farmers in rational decision making and ecosystem analysis
 Support in the implementation of national contingency plans

Hosting of key International Instruments (IPPC, International Code of Conduct on the Distribution and Use of Pesticide, IT-PGRFA)
Support to countries in policy options
Surveillance of wheat rusts

Successful program of tracking wheat rust pathogens is being implemented by ICARDA & CIMMYT and will be reinforced by FAO & Cornell University (BGMF)

The objective will be to integrate surveillance system into national and international entities tasked with tactical and strategic risk management and interventions in response to biosecurity threats

Success will result in routine exploitation of the global surveillance data using the spatial, temporal, and evolutionary dynamics of wheat rusts (unit to be initiated at FAO)
Surveillance of wheat rusts

- Wheat disease survey in the field (using GPS)
- Race identification from field survey samples
- Rust trap nurseries distributed in all countries

Further information needed (for risk assessment)
- Wheat cultivation maps (national and regional)
Cereal Rust Monitoring- Green Bridges

Key measures to avoid/avert current and future rust spread and prevent epidemics could be achieved through better understanding of the passive movement of air-borne pathogens at the horn of Africa.

- Adequate monitoring
- Green bridge adjustments
- Prevalent wind current & Rust spread

Yemen Gate for RUSTS links East Africa to Arabian Peninsula, South Asia, and beyond
Cereal Rust Monitoring - Green Bridges

<table>
<thead>
<tr>
<th>Country</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Africa</td>
<td></td>
</tr>
<tr>
<td>Near East</td>
<td></td>
</tr>
<tr>
<td>Egypt</td>
<td></td>
</tr>
<tr>
<td>Sudan</td>
<td></td>
</tr>
<tr>
<td>Oman</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td></td>
</tr>
<tr>
<td>North Africa</td>
<td></td>
</tr>
<tr>
<td>West Asia</td>
<td></td>
</tr>
<tr>
<td>Yemen off-season</td>
<td></td>
</tr>
<tr>
<td>Yemen main season</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Planting period**
- **Growing season**
- **Harvesting period**
- **No Wheat crop**

Can we make a free wheat period in East Africa & Yemen?
FAO Locust Early Warning System is relevant to wheat rusts

Locust and rust have common features
- Transboundary
- Move with the winds
- Occur in the same region

Desert Locust Forecast
27 April 2007

Desert Locust Situation
3 May 2007

http://www.fao.org/ag/locusts
Locust data collection & transmission

- Years of experience
- Quality of data - good partnership
- Timely communication
- National interest
- Good support from MoAs

1. Survey
2. eLocust2
3. Via satellite
4. National Focal Point
Outcome: Timely forecasting - Risk aversion/reduction

- simple and rapid exchange of information
- timely situation updates
- color-coded Risk Levels
- planned intervention & National/Regional action taken
Wind Currents: Rust spores - air borne, passive transport

Al Kedan, Yemen (Dec-Feb 05/06 & 06/07)

Notes:
- Location of new occurrence Ug99?
 (Ref: Contact Dr. K. Nazari)
- Arrow indicates wind direction
- Stem rust well developed in Yemen:
 • Al Kedan-Dec-Jan
 • Highland February

Rust mapper

GIS-Support
D. Hodson, CIMMYT
E. De-Pauw, ICARDA
K. Cressman, FAO
Stem Rust Occurrence in CWANA

- No risk of stem rust
- Slight risk of stem rust
- Moderate/severe risk of stem rust

- Stem Rust
- Yellow rust
- Leaf rust
Further actions to be taken in wheat rust management and prevention
Current and Future Plans in Wheat Rust Management and Prevention

Varietal replacement and breeding strategies
- Urgent replacement of susceptible varieties at high risk countries
- Encourage release of resistant/tolerant cultivars (durable resistance)
- Encourage diversification of available varieties
- Enhance seed multiplication (use most efficient system)

Reduction/elimination of rust inoculum (spore masses)
- Encourage planting of early maturing varieties
 - plant downwind reducing risk of inter-seasonal cross field contamination
- Eliminate/avoid green bridge
 - overlapping of wheat crop: several planting dates, spring and winter wheat
- Delay fall planting (WANA)
 - Avoid winter planting (December-January) of susceptible varieties
 - Delay summer planting (East Africa)
- Eliminate volunteer wheat/grasses before emergence of main wheat crop
Create patchwork: Strip planting, landscaping
- Plant strips of different varieties or even different cereal species
- Consider varietal mixture (similar genotypes with different resistance levels)

Fungicide application at hot spots
- Cases where Ug99 confirmed-avoid further spread
- High productive crop where high risk of yield loss expected
- Assuring national rust fungicide registration
- Assuring the availability of sufficient fungicide quantities
- Rational plan for fungicide application to avoid abuse and resistance,...)
Immediate Actions

• Improving NARS Research Facilities
 Accelerate varietal release systems (update/improve national catalogues)

 Enhance/strengthen national seed production systems

 Support rust pathotyping capabilities in Ethiopia, Kenya, Egypt, Turkey, and Iran others as need arises

• Re-enforce Training Programs

• Establish/Strengthen inter-institutional links and coordination (Research-Extension-Plant Protection)

• Institutionalize the annual national pest and disease surveys
Borlaug Global Rust Initiative-BGRI Donors

Current Funding
USAID, USA
CIDA, Canada
ICAR, India
AFSED
BMGF

Expected funding
FAO
CG-Centers
IFAD

Today’s Children are tomorrow’s future farmers for whom we are building a brighter future.