IPPC Seminar: Plant Health, Climate Change and Environmental Protection Wednesday 10 October 2018 Sheikh Zayed Center, FAO HQs, Rome

Exploring global changes consequences on emergence of plant diseases and pests by quantitative risk assessment

Gianni Gilioli

AgroFood Lab, University of Brescia

gianni.gilioli@unibs.it

Hart A., Jeger M., Kozelska S., MacLeod A., Mosbach-Schulz O., Potting R., Rafoss T., Schrader G., Stancanelli G., Vos S., Van der Werf W.

Global changes: Multi-dimensional classification

Environmental changes

- Global warming
- Atmospheric and ocean circulation
- Loss of biodiversity
- Ecosystem processes and services

Agricultural changes

- Production systems
- Freshwater depletion
- Agro-biodiversity loss
- Land degradation and desertification

Societal changes

- Trade and human migration
- Human population growth
- Land use
- Urban intensification
- Pollutants emission

Global changes: Effects on plant pests and diseases

Global changes: Methodological issues

Multi-dimensional effects

Heterogeneity in drivers and processes involved

Interaction between system' compartments and processes

Non-linear effects

Complex relationships between causes and effects

Global changes: Methodological requirements

Moving beyond linearity!

From: Agronomy 2018, 8(1), 7; doi:10.3390/agronomy8010007

Global changes: Methodological requirements

Population-based (i.e. mechanistic) approach

The EFSA scientific framework for quantitative pest risk assessment

EFSA framework for quantitative PRA: Principles

EFSA framework for quantitative PRA: Principles

Adaptive

- Pest, objective, resources
- Scenarios for the assessments
 (e.g., pathway, RRO, trade)

Process-based

- Flow of events and processes
- Sequence of changes in the abundance and distribution

Quantitative

- Using quantities measurable in the real world
- Combine knowledge and uncertainty

THE FOUR STEPS

- **Entry**: (distribution of) number of potential founder populations in the EU considering trade flows, proportion of infested products and probability of transfer to host
- **Establishment**: (distribution of) actual number of founder population in the EU, considering the number of potential founder populations and the probability of establishment
- Spread: (distribution of) number of spatial units that are affected by pest as a result of dispersal
- **Impact**: (distribution of) total yield loss and effects on crop quality in FU

SCENARIO-BASED APPROACH

Components defining the scenarios for risk assessment

For fit for purpose and explicit risk assessment

scenario 'A0', Baseline scenario is the current situation. A0 is always assessed

<u>scenarios A1 to An</u> corresponding to changes in the pathways or RROs etc. can be compared with A0

Example Scenario A1: Current regulation in place without the E. lewisi specific requirements (Annex IIAI to Council Directive 2000/29/EC2) and in addition all imported host commodities should come from Pest Free Areas (PFA) in the country at origin (ISPM 4 (FAO, 1995)) and enforced measures on specific pathways.

ESTIMATE UNCERTAINTY DISTRIBUTION

The two-tier approach

- Elicitating the assessed variable (e.g., the impact as % yield reduction)
- Elicitating model parameters Quantitative methods allow for
- More transparent risk assessment
- Guide the risk assessment to express the constituent parts of risk

SCENARIO COMPARISON

Scenario comparison

EFSA framework for quantitative PRA: Application

THE CASE STUDIES DEVELOPED BY EFSA

Flavescence Dorée Phytoplasma

Ditylenchus destructor

Eotetranychus lewisi

Diaporthe vaccinii

Ceratocystis platani

Cryphonectria parasitica

Radopholus similis

Atropellis sp.

Assessing global change scenarios

Assessing global change drivers

Assessing global change drivers

Climate change scenarios

Radopholus similis

Impact of climate change (+2 °C) for the establishment and spread of *Radopholus similis*

Figure A.5: Citrus growing areas of the EU classified according to temperature sum intervals based on monthly average temperatures from locations surveyed for the presence of *R. similis*, see JRC (2017) for the data used to create the map

Figure A.7: Citrus growing areas of the EU classified for temperature suitability for *Radopholus similis* establishment according to temperature sum intervals under climate warming, see JRC (2017) for the data used to create the map

Comparison of RROs scenarios

Ditylenchus destructor

SC 0 Baseline scenario (blue)

SC. 3:(=SC 0) Production of flower bulbs in pest-free places of production in third countries (green)

SC 5 Production of the flower bulbs in pest-free areas (pink)

SC. 6: Hot water treatment before planting (orange)

Scenarios of spread of *Ditylenchus destructor* considering different RROs

Figure 4: Simulation results on the intra-European spread of D. destructor with tulip planting material

Land-use scenarios

Pomacea caniculata

Rice growing areas in the EU

Overlap with EU wetlands

PBDMs: the five steps

PBDMs: applications

- Agricultural pests
 - T. urticae (two-spotted spider mite)
 - P. persimilis
 - T. vaporariorum (glasshouse whitefly)
 - E. formosa
 - *B. oleae* (olive fruit fly)
 - L. botrana (European grapevine moth)
 - S. titanus (American grapevine leafhopper)
 - P. ficus (vine mealybug)

- Agricultural pests
 - B. tabaci (silverleaf whitefly)
 - D. kuriphilus (chestnut gall wasp)
 - P. canaliculata (apple snail)
 - Argyrotaenia pulchellana
 - C. pomonella (codling moth)
 - C. molesta (peach moth)
 - H. armigera (cotton bollworm)
 - P. viburni (obscure mealybug)
 - *C. capitata* (Mediterranean fuit fly)

- Disease vectors
 - An. gambiae s.s.
 - Ae. albopictus
 - C. pipiens
 - R. appendiculatus
- Under development
 - Halyomorpha halys (brown marmorated stink bug)
 - Philaenus spumarius (meadow spittlebug)
 - Spodoptera frugiperda (fall armyworm)

Conclusions

- The methodological framework for quantitative pest risk assessment
 - Suitable for considering multi-dimensional, systemic and non-linear effects related to global changes
 - Framework and not a model: providing a systematic and dynamic representations of the processes liable to generate risks
- Flexible approach and allows a variety of quantitative methods to be used at different systems and levels of complexity

- Advantages of quantitative assessment
 - The assessment outcome (risk) is expressed in quantitative <u>units measurable in the physical world</u> allowing risk managers a more concrete understanding of the assessment result and hence a better basis for decision making
 - Increase the transparency in providing mechanism on how to combine risk elements in logical manner and to estimate model parameters
 - Take into account both <u>quantified and unquantified</u> <u>uncertainties</u>
 - <u>Automatically updates</u> with revised inputs
 - Evaluate the <u>effectiveness of options</u> for risk reduction and mitigation measure
- Possibility of expressing the risk in monetary units

Thank you!

